麦科信示波器

SCPI 命令说明书

*适用于 MHO 高分辨率示波器 3 系、MDO 系列、ETO 系列、STO 系列、SATO 系列、TO 系列、ATO 系列

目 录

1.	文档	介绍	4
	1. 1	文档目的	4
	1.2	读者对象	4
	1.3	参考文档	4
	1.4	术语	4
2.	产品	介绍	5
	2. 1	产品背景	5
	2. 2	产品面向的用户群体及需求描述	5
	2. 3	产品中的角色	5
	2.4	业务工作流程	5
	2. 5	目标运行软硬件环境	6
	2.6	约束和限制	6
	2.7	适用接口	6
3.	SCPI	需求	7
	3. 1	SCPI 简介	7
		3.1.1命令格式	7
		3. 1. 2 符号说明	7
		3. 1. 3 参数类型	7
		3. 1. 4 命令缩写	8
	3. 2	命令系统	8
		3.2.1 公用命令	8

3. 2. 2 : MENU 菜单功能命令	8
3. 2. 3 采样命令子系统	12
3. 2. 4 通道命令子系统	17
3. 2. 5 数学命令子系统	22
3. 2. 6 光标命令子系统	33
3. 2. 7 显示命令子系统	39
3. 2. 8 测量命令子系统	42
3. 2. 9 触发命令子系统	48
3. 2. 10 时基命令子系统	69
3. 2. 11 存储命令子系统	71
3. 2. 12 总线配置命令子系统	74
3. 2. 13 参考波形命令子系统	83
3. 2. 14 AUTO 设置子系统	85
3. 2. 15 波形命令子系统	88

1. 文档介绍

1.1 文档目的

本文档旨在定义示波器的 SCPI 需求,为 Micsig 示波器支持 SCPI 协议和符合 IEEE488.2 标准提供准备工作。

1.2 读者对象

开发人员及测试人员

1.3 参考文档

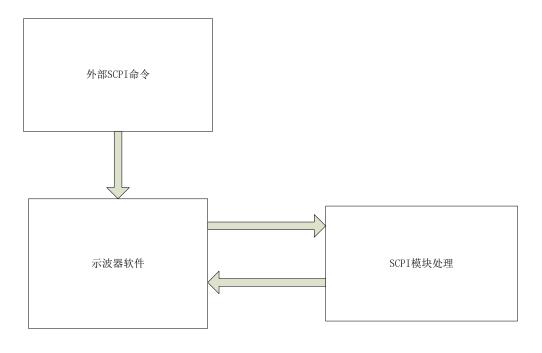
1.4 术语

缩写、术语	解释
SCPI	Standard Commands for Programmable Instruments Manual

2. 产品介绍

2.1 产品背景

SCPI 命令处理模块是为了符合 IEEE488.2 标准而嵌入到我司的产品中,作为 SCPI 仪器, 我们要严格按照 IEEE488.2 标准对仪器的规定来进行开发。


2.2 产品面向的用户群体及需求描述

SCPI 命令处理模块只面向软件自身,用以处理设备以外向本软件发出的所有的 SCPI 命令。

2.3 产品中的角色

角色名称	职责描述
共同命令系统	处理所有仪器设备的共同命令
必备命令系统	处理仪器设备的必备命令
其他	处理仪器设备的可选命令

2.4 业务工作流程

2.5 目标运行软硬件环境

操作系统: Android

硬件环境: 平板示波器

2.6 约束和限制

由于此模块是软件的一个模块,所以约束和限制和产品相同。

2.7 适用接口

USB, LAN, WIFI.

3. SCPI 需求

3.1 SCPI 简介

3.1.1 命令格式

SCPI 命令为树状层次结构,包括多个子系统,每个子系统由一个根关键字和一个或数个层次关键字构成。命令行通常以冒号":"开始;关键字之间用冒号":"分隔,关键字后面跟随可选的参数设置;命令行后面添加问号"?",表示对此功能进行查询;命令和参数以"空格"分开。

3.1.2 符号说明

1、 大括号{ }

大括号中的内容为参数选项。参数项之间通常用竖线"|"分隔。使用命令时,必须选择其中一个参数。

2、 竖线 |

竖线用于分隔多个参数选项,使用命令时,必须选择其中一个参数。

3、 方括号[]

方括号中的内容是可省略的。

4、三角括号()

三角括号中的参数必须用一个有效值来替换。

3.1.3 参数类型

1、 布尔型 (Bool)

参数取值为 "OFF"、"ON"、"O"、"1"。

2、 离散型 (Discrete)

参数取值为所列举的选项。

3、 整型 (Integer)

除非另有说明,参数在有效值范围内可以使任意整数(NR1 格式)。注意,此时请不要设置参数为小数格式,否则将出现异常。

4、 实数 (Real)

参数在有效值范围内可以使任意实数,该命令接受小数(NR2格式)和科学计数(NR3格式)格式的参数输入。

5、 ASCⅡ字符串 (ASCⅡ String)

参数取值为 ASC II 字符的组合。

3.1.4 命令缩写

所有命令对大小写不敏感,可以全部采用大写或小写。但如果要缩写,必须输完 命令格式中的所有大写字母。

3.2 命令系统

3.2.1 公用命令

*IDN

功能: 读取示波器相关信息。包括版本号,制造商,产品型号,产品序列号。

格式: *IDN?

返回格式:

Micsig, <model>, <serial numbe>, X. X. XXX

<model>: 仪器型号。

〈serial numbe〉: 仪器序列号。

X. X. XXX: 仪器软件版本。

举例:

Micsig, MD05004, 390000029, 1.388.132

3.2.2 :MENU 菜单功能命令

3. 2. 2. 1 :MENU: AUTO

自动配置,可快速将示波器自动配置为对输入信号显示最佳效果。自动配置内容包括:适用于单个通道和多个通道;自动调整信号水平档位、垂直档位和触发电平;示波器波形反向关闭、带宽设置为全带宽、耦合方式为DC耦合、采样方式为正常采样;触发设置为边沿触发、触发模式为自动。

功能:自动设置(自动量程)开始执行或者停止。

自动配置,可快速将示波器自动配置为对输入信号显示最佳效果。自动配置内容包括:适用于单个通道和多个通道;自动调整信号水平档位、垂直档位和触发电平;示波器波形反向关闭、带宽设置为全带宽、耦合方式为DC耦合、采样方式为正常采样;触发设置为边沿触发、触发模式为自动。

格式: :MENU:AUTO <bool>

:MENU:AUTO?

其中, <bool>, 布尔型, {{0|0FF}|{1||0N}}。

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令打开通道1的显示。

:MENU:AUTO ON 或:MENU:AUTO 1

下面的查询返回"1"。

:MENU:AUTO?

3. 2. 2. 2 : MENU: RUN

功能: 使示波器开始运行,符合触发条件,开始采集数据。

格式: :MENU:RUN

3. 2. 2. 3 :MENU:STOP

功能: 使示波器停止运行, 数据采集停止。

格式: :MENU:STOP

3. 2. 2. 4 :MENU:SINGle

功能:将示波器设置为单序列,示波器捕获并显示单次采集。

格式: :MENU:SINGle

3. 2. 2. 5 :MENU:LOCK <bool>

功能: 关闭/取消关闭示波器触摸屏幕。

格式: :MENU:LOCK <bool>

:MENU:LOCK?

其中, bool, 布尔型, {{0|0FF}|{1||0N}}。

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令关闭触摸屏。

:MENU:LOCK ON 或 MENU:LOCK 1

下面的查询返回"1"。

:MENU:LOCK?

3. 2. 2. 6 : MENU: HALF

3. 2. 2. 6. 1 :MENU:HALF:CHANnel

功能:将通道位置设置为垂直零点位置(波形显示区垂直中心)。

格式: :MENU:HALF:CHANnel <channel>

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

3. 2. 2. 6. 2 :MENU:HALF:TRIGpos

功能: 设置触发位置到屏幕中间。

格式: :MENU:HALF:TRIGpos <source>

其中, <source>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

3. 2. 2. 6. 3 :MENU:HALF:XCURsor

功能:设置通道的垂直光标在50%处。

格式: :MENU:HALF:XCURsor

3. 2. 2. 6. 4 :MENU:HALF:YCURsor

功能:设置通道的水平光标在50%处。

格式: :MENU:HALF:YCURSor

3. 2. 2. 6. 5 :MENU:HALF:LEVe1

功能:将触发电平设置为触发信号幅值的中间位置。

格式: :MENU:HALF:LEVel <channel>

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4 },默认为当前通道。

3. 2. 2. 7:MENU: CHANne1 <n>, <bool>

功能:通道菜单的打开或关闭

格式: :MENU:CHANnel <n>, <bool>

:MENU:CHANnel? <n>

其中, <n>, 离散型, {CH1 | CH2 | CH3 | CH4 | MATH | REF | S1 | S2}; <bool>, 布尔型, {{0 | OFF} | {1 | | ON}}。

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令打开通道1的显示。

:MENU:CHANnel CH1, ON 或:MENU:CHANnel CH1, 1

下面的查询返回"1"。

:MENU:CHANnel? CH1

3. 2. 2. 8:MENU:QUICk <bool>

功能: 快捷菜单(底部菜单)的打开或关闭

格式::MENU:QUICk <bool>

:MENU:QUICk?

其中<bool>, 布尔型, {{0|0FF}|{1||0N}}。

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令打开通道1的显示。

:MENU:QUICk ON 或:MENU:QUICk 1

下面的查询返回"1"。

:MENU:QUICk?

3. 2. 2. 9:MENU:MAIN <bool>

功能: 主菜单(顶部菜单)的打开或关闭

格式: :MENU:MAIN <bool>

:MENU:MAIN?

其中<bool>, 布尔型, {{0|0FF}|{1||0N}}。

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令打开通道1的显示。

:MENU:MAIN ON或:MENU:MAIN 1

下面的查询返回"1"。

:MENU:MAIN?

3.2.3 采样命令子系统

3. 2. 3. 1 : ACQuire: TYPE

功能:设置采样方式。

格式: :ACQuire:TYPE <type>

:ACQuire:TYPE?

其中, <type>, 离散型, {NORMal | MEAN | ENVelop | PEAK }

返回格式:查询返回"NORMal", "MEAN", "PEAK", "ENVelop"。

举例:

下面的命令选择包络采样模式。

:ACQuire:TYPE ENVelop

下面的查询返回"ENVelop"。

:ACQuire:TYPE?

3. 2. 3. 2 : ACQuire: MEAN

功能:设置平均采样次数。所设置的值为2的整数倍数。

格式: :ACQuire:MEAN <count>

:ACQuire:MEAN?

其中, <count>, 离散型, {2|4|8|16|32|64|128|256}

返回格式:查询返回一个整数。

举例:

下面的命令将平均采样次数设置为"32"。

:ACQuire:MEAN 32

下面的查询返回"32"。

:ACQuire:MEAN?

3. 2. 3. 3 : ACQuire: ENVelop

功能: 设置包络采样次数。所设置的值为2的整数倍数或无穷。

格式: :ACQuire:ENVelop <count>

:ACQuire:ENVelop?

其中, <count>, 离散型, {2|4|8|16|32|64|128|256|inf}。

返回格式:查询返回一个整数。

举例:

下面的命令将包络采样次数设置为"32"。

:ACQuire:ENVelop 32

下面的查询返回"32"。

:ACQuire:ENVelop?

3. 2. 3. 4 : ACQuire: SEGMented

功能:设置分段存储。

3. 2. 3. 4. 1 :ACQuire:SEGMented <bool>

:ACQuire:SEGMented?

设置与查询分段存储的开启与关闭;

其中 bool, 布尔型, {0|OFF}|{1||ON};

举例

下面的命令打开分段存储。

:ACQuire:SEGMented ON

下面的查询返回"1"。

:ACQuire:SEGMented?

3. 2. 3. 4. 2 : ACQuire: SEGMented: NO?

:ACQuire:SEGMented:NO?

查询当前已经触发的段数;

举例

下面的查询返回"1003",表示当前已经有 1003 段经过触发并存储在 FPGA 的存储器内。

:ACQuire:SEGMented: NO?

3. 2. 3. 4. 3 :ACQuire:SEGMented:QTY <NO>

:ACQuire:SEGMented:QTY?

设置与查询分段存储的段数;

其中 no, 整型, 参考数据手册;

举例

下面的命令设置分段存储段数为4。

:ACQuire:SEGMented:QTY 4

下面的查询返回"4"。

:ACQuire:SEGMented:QTY?

3. 2. 3. 4. 4 : ACQuire: SEGMented: DISType <type>

:ACQuire:SEGMented:DISType?

设置与查询分段存储的显示方式;

其中 type, 离散型, {SINGLe | FIT}; SINGLe 为单帧显示, FIT 为拟合显示

举例

下面的命令设置分段存储单帧显示。

:ACQuire:SEGMented:DISType SINGLe

下面的查询返回"SINGLe"。

:ACQuire:SEGMented:DISType?

3. 2. 3. 4. 5 :ACQuire:SEGMented:ORDer <type>

:ACQuire:SEGMented:ORDer?

设置与查询分段存储播放顺序;

其中 type, 离散型, {ORDer | REORder } ORDer 为顺序, REORder 为倒序

举例

下面的命令设置分段存储顺序播放。

:ACQuire:SEGMented:ORDer ORDer

下面的查询返回"ORDer"。

:ACQuire:SEGMented:ORDer?

3. 2. 3. 4. 6 :ACQuire:SEGMented:PLAY

开始自动播放

:ACQuire:SEGMented:STOP

暂停自动播放

3. 2. 3. 4. 7 : ACQuire: SEGMented: FRA1 < value>

:ACQuire:SEGMented:FRA1?

设置与查询单帧显示时的当前帧;

其中 value,整型,1°停止时的最大值

举例

下面的命令设置当前帧为546。

:ACQuire:SEGMented:FRA1 546

下面的查询返回"546"。

:ACQuire:SEGMented:FRA1?

3. 2. 3. 4. 8 : ACQuire: SEGMented: FRA2 <value>

:ACQuire:SEGMented:FRA2?

设置与查询拟合显示时的初始帧;

其中 value,整型,1[~]停止时的最大值

举例

下面的命令设置拟合显示初始帧为100。

:ACQuire:SEGMented:FRA2 100

下面的查询返回"100"。

:ACQuire:SEGMented:FRA2?

3.2.3.4.9 :ACQuire:SEGMented:FRA3 <value>

:ACQuire:SEGMented:FRA3?

设置与查询拟合显示时的结束帧;

其中 value, 整型, FR2^个停止时的最大值

举例

下面的命令设置拟合显示结束帧为150。

:ACQuire:SEGMented:FRA3 150

下面的查询返回"150"。

:ACQuire:SEGMented:FRA3?

3. 2. 3. 4. 10 :ACQuire:SEGMented:PLAY:SPED <sped>

:ACQuire:SEGMented:SPED?

设置与查询自动播放时的速度;

其中 sped, 离散型, {1|2|4|8}

举例

下面的命令设置 4 倍速播放。

:ACQuire:SEGMented:PLAY:SPED 4

下面的查询返回"4"。

:ACQuire:SEGMented:PLAY:SPED?

3. 2. 3. 5 : ACQuire: SRATe

功能: 查询当前模拟通道的采样率。

格式: :ACQuire:SRATe?

3. 2. 3. 6 : ACQuire: DEPSelect

功能:设置与查询示波器当前存储深度的选择项。

格式: :ACQuire:DEPSelect <type>

:ACQuire:DEPSelect?

其中, <type>, 离散型,根据机型不同,支持的也不同,可设置为 {AUTO | 110000000 | 11000000 | 1100000 | 110000 | 110000 |

举例

下面的命令设置存储深度为 AUTO。

:ACQuire:DEPSelect 22000000

下面的查询返回"22000000"。

:ACQuire:DEPSelect?

3. 2. 3. 7 : ACQuire: DEPTh?

功能: 查询示波器当前存储深度实际数值。

格式: :ACQuire:DEPTh?

其中, 〈type〉, 离散型, 根据机型不同, 返回存储深度的实际数值

举例

下面的查询返回"22000000"。

:ACQuire:DEPTh?

3.2.4 通道命令子系统

3. 2. 4. 1:CHANnel<n>:DISPlay <bool>

功能:通道的打开或关闭

格式: :CHANnel<n>:DISPlay <bool>

:CHANne1<n>:DISP1ay?

其中, <n>, 离散型, {1|2|3|4}; <bool>, 布尔型, {{0|0FF}|{1||0N}}。

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令打开通道1的显示。

:CHANnell:DISPlay ON 或:CHANnell:DISPlay 1

下面的查询返回"1"。

:CHANnell: DISPlay?

3. 2. 4. 2:CHANne1<n>:INVerse <bool>

功能: 打开或关闭模拟通道的反相显示。

格式: :CHANnel<n>:INVerse <bool>

:CHANnel<n>:INVerse?

其中, 〈n〉, 离散型, {1 | 2 | 3 | 4}; 〈bool〉, 布尔型, {{0 | 0FF} | {1 | | 0N}}。

返回格式: 查询返回"0"或"1"。

举例:

下面的命令打开通道1的反相显示。

:CHANnell:INVerse ON 或:CHANnell:INVerse 1

下面的查询返回"1"。

:CHANnell:INVerse?

3. 2. 4. 3: CHANnel <n>:BAND <type>, <freq>

功能:设置模拟通道的带宽限制为"20M"或"全带宽"。

格式: :CHANnel<n>:BAND <type>, <freq>

:CHANne1<n>:BAND?

参数: <n>, 离散型, {1|2|3|4}; <type>, 离散型, {20M|FULL|HIGH|LOW}; <freq>, 实型, {参考数据手册}, 只在"HIGH""LOW"下有效。

返回格式: 查询返回 "20M"、"FULL"、"HIGH"、"LOW"。

举例:

下面的命令设置通道1的带宽限制为High, 10000000。

:CHANnell:BAND HIGH, 10000000

【注意】"10000000"可以为任意值,在 20M 和 FULL 下该值无效

:CHANnell:BAND?

3. 2. 4. 4 :CHANnel<n>:PRTY <type>

功能:设置模拟通道的探针类型为"电压"或"电流"。

格式: :CHANnel<n>:PRTY <type>

:CHANne1<n>:PRTY?

其中, $\langle n \rangle$,离散型, $\{1|2|3|4\}$; $\langle type \rangle$,离散型, $\{VOL|CUR|BAR|MPA|PSI\}$ 。 (标注三个参数适用于汽车示波器)

返回格式: 查询返回 "VOL"、"CUR"、"BAR"、"MPA"或"PSI"。

举例:

下面的命令绘制通道1的探针类型为电压。

:CHANnell:PRTY VOL

下面的查询返回"VOL"。

:CHANnell:PRTY?

3. 2. 4. 5 :CHANnel <n>:PROBe <atten>

功能:设置模拟通道探头的衰减比。

格式: :CHANnel<n>:PROBe <atten>

:CHANne1<n>:PROBe?

其中, <n>, 离散型, {1|2|3|4}; <atten>, 离散型 {0.001|0.002|0.005|0.01|0.02|0.05|0.1|0.2|0.5|1|2|5|10|20|50|100|200|500|10 00}。

返回格式: 查询返回"0.001", "0.002", "0.005", "0.01", "0.02", "0.05", "0.1", "0.2", "1", "2", "5", "10", "20", "50", "100", "200", "500", "1000"。

举例:

下面的命令设置通道1所接入探头的衰减比为10。

:CHANnell:PROBe 10

下面的查询返回"10"。

:CHANnell:PROBe?

3. 2. 4. 6 :CHANnel<n>:COUPle <couple >

功能:设置模拟通道输入耦合方式为 "AC"、"DC"或"GND"。

格式: :CHANnel<n>:COUPle <couple>

:CHANnel<n>:COUPle?

其中, <n>, 离散型, {1|2|3|4}; <couple >, 离散型, {AC|DC|GND}

返回格式: 查询返回 "AC", "DC"或 "GND"。

举例:

下面的命令设置通道1的输入耦合方式为"AC"。

:CHANnell:COUPle AC

下面的查询返回"AC"。

:CHANnell:COUPle?

3. 2. 4. 7 :CHANnel<n>:INPutres <input>

功能:设置模拟通道的输入阻抗为 "MEGA($1M\Omega$)"或 "FIFTy(50Ω)"。

格式: :CHANnel<n>:INPutres <input>

:CHANnel<n>:INPutres?

其中, <n>, 离散型, {1|2|3|4}; < input>, 离散型, {MEGA|FIFTy}。

返回格式:查询返回"MEGA"或"FIFTy"。

举例:

下面的命令设置通道 1 的输入阻抗为 $1M\Omega$ 。

:CHANnell:INPutres MEGA

下面的查询返回"MEGA"。

:CHANnell:INPutres?

3.2.4.8 :CHANnel<n>:SCALe <extent > (也可以用:CHANnel<n>:EXETent <extent >)

功能: 设置指定模拟通道波形显示的垂直档位。

格式: :CHANnel<n>: SCALe <extent>

:CHANnel<n>: SCALe?

其中, <n>, 离散型, {1|2|3|4}; <extent >, 实型, 不超过最大最小值

最大值:示波器最大档位*当前设置的探针倍数

最小值:示波器最小档位*当前设置的探针倍数。

返回格式:查询以科学计数形式返回垂直档位值。

举例:

下面的命令设置通道 1 的垂直档位为 1V/div。

:CHANnell:SCALe 1

下面的查询返回"1.000000e+00"。

:CHANnell:SCALe?

3.2.4.9 :CHANnel<n>:POSition <pos>

功能: 设置指定通道波形显示的垂直位置。

格式: :CHANnel<n>:POSition <pos>

:CHANnel<n>:POSition?

其中, <n>, 离散型, {1|2|3|4}; <pos>, 实型。

返回格式:查询以科学计数形式返回偏移值。

举例:

下面的命令设置通道 1 的垂直偏移为 0.01V。

:CHANnell:POSition 0.01

下面的查询返回"1.000000e-02"

:CHANnell:POSition?

3. 2. 4. 10 :CHANne1<n>:VREF <bool>

功能: 设置模拟通道的垂直展开基准。

格式: :CHANnel<n>:VREF <bool>

:CHANne1<n>:VREF?

其中: <n>, 离散型, {1|2|3|4}; <bool>, 离散型, {CENTer | ZERO}。

返回格式: 查询返回 "CENT"或 "ZERO"。

举例:

下面的命令设置通道1的垂直展开基准是中心。

:CHANnell:VREF CENTer

下面的查询返回"CENT"。

:CHANnell:VREF?

3. 2. 4. 11 :CHANnel<n>:LABel <string>

功能: 设置模拟通道的通道标签。

格式: :CHANnel<n>:LABel <string>

:CHANne1<n>:LABe1?

其中: <n>, 离散型, {1|2|3|4}; <string>, 字符串。

返回格式:查询返回字符串。

举例:

下面的命令设置通道1的标签为DDR。

:CHANnell:LABel DDR

下面的查询返回"DDR"。

:CHANnell:LABel?

3. 2. 4. 12 :CHANnel <n>:LABel:CLEar

功能:清除通道标签。

格式: :CHANnel<n>:LABel:CLEar

其中: <n>, 离散型, {1|2|3|4}.

举例:

下面的命令清除通道1的标签。

:CHANnell:LABel:CLEar

3. 2. 4. 13: CURRent: CHANne1 <n>

功能:设置当前通道。

格式: :Current:CHANnel <n>

:CURRent:CHANnel?

其中: <n>, 离散型, {CH1 | CH2 | CH3 | CH4 | MATH | R1 | R2 } R3 | R4 | S1 | S2 } 。

返回格式: 查询返回 {CH1 | CH2 | CH3 | CH4 | MATH | R1 | R2 } R3 | R4 | S1 | S2 } 。

举例:

下面的命令设置通道1的垂直展开基准是中心。

:CURRent:CHANnel CH1

下面的查询返回"CH1"。

:CURRent:CHANnel?

3.2.5 数学命令子系统

3. 2. 5. 1 :MATH:DISP1ay

功能: 打开或关闭数学运算类型。

格式::MATH:DISPlay <bool>

:MATH:DISPlay?

其中, <bool>, 布尔型, {{0|0FF}|{1||0N}}。

3. 2. 5. 2 : MATH: MODE

功能: 选择数学运算类型。

格式: :MATH:MODE <mode>

:MATH:MODE?

其中, <mode>, 离散型, {BASE|FFT| AX+B|ADVAnced}。

返回格式:查询返回 "BASE"、"FFT"、"AX+B"、"ADVAnced"。

举例:

下面的命令选择 FFT 运算。

:MATH:MODE FFT

下面的查询返回"FFT"。

:MATH:MODE?

3. 2. 5. 3 :MATH: VREF <bool>

功能:设置数学波形的垂直展开基准。

格式: :MATH:VREF <bool>

:MATH:VREF?

其中: <bool>, 离散型, {CENTer | ZERO}。

返回格式:查询返回"CENT"或"ZERO"。

举例:

下面的命令设置垂直展开基准是中心。

:MATH:VREF CENTer

下面的查询返回"CENT"。

:MATH:VREF?

3. 2. 5. 4 :MATH:BASE

3. 2. 5. 4. 1 :MATH:BASE:SOU1

功能: 选择双波形运算的信源 1

格式: :MATH:BASE:SOU1 <source>

:MATH:BASE:SOU1?

其中, 〈source〉, 离散型, {CH1 | CH2 | CH3 | CH4 }。

返回格式: 查询返回 "CH1" 、 "CH2" 、 "CH3" 或 "CH4"。

举例:

下面的命令选择通道1作为信源1.

:MATH:BASE:SOU1 CH1

下面的查询返回"CH1"。

:MATH:BASE:SOU1?

3. 2. 5. 4. 2 :MATH:BASE:SOU2

功能:选择双波形运算的信源 2。

格式: :MATH:BASE:SOU2 <source>

:MATH:BASE:SOU2?

其中, <source>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

返回格式: 查询返回 "CH1" 、 "CH2" 、 "CH3" 或 "CH4"。

举例:

下面的命令选择通道1作为信源2。

:MATH:BASE:SOU2 CH1

下面的查询返回"CH1"。

:MATH:BASE:SOU2?

3. 2. 5. 4. 3 :MATH:BASE:VSCale

功能: 设置双波形运算结果的垂直档位。

格式: :MATH:BASE:VSCale < extent >

:MATH:BASE:VSCale?

其中, < extent >, 实型,< extent >, 实型,{1e-15~5e14,只能以 1、2、5、步进}。。

返回格式:查询以科学计数形式返回档位值。

举例:

下面的命令设置加法运算结果的垂直档位为1。

:MATH:BASE:VSCale 1

下面的查询返回"1.000000e+00"。

:MATH:BASE:VSCale?

3. 2. 5. 4. 4 : MATH: BASE: VPOSition

功能:设置双波形运算结果的垂直偏移。

格式: :MATH:BASE:VPOSition <position>

:MATH:BASE:VPOSition?

其中, 〈position〉, 实型, 科学计数法表示。

:MATH:BASE:VPOSition 8 /*设置垂直偏移为 8V*/

:MATH:BASE:VPOSition? 查询返回 8.000000E0*

3. 2. 5. 4. 5 : MATH: BASE: OPERator

功能: 选择加法运算的运算符

格式: :MATH:BASE:OPERator<operator>

:MATH:BASE:OPERator?

其中, <operaotr>, 离散型, {ADD|SUB|MUL|DIV}。

返回格式: 查询返回 "ADD"、"SUB"、"MUL"或"DIV"。

举例:

下面的命令设置运算符为 加.

:MATH:BASE:OPERator ADD

下面的查询返回"ADD"。

:MATH:BASE:OPERator?

3. 2. 5. 5 :MATH:FFT

3. 2. 5. 5. 1 :MATH:FFT:SOURce

功能:选择 FFT 运算的信源。

格式: :MATH:FFT:SOURce <source>

:MATH:FFT:SOURce?

其中, <source>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

返回格式: 查询返回 "CH1" 、 "CH2" 、 "CH3" 或 "CH4"。

举例:

下面的命令选择通道1作为信源.

:MATH:FFT:SOURce CH1

下面的查询返回"CH1"。

:MATH:FFT:SOURce?

3. 2. 5. 5. 2 :MATH:FFT:WINDow

功能:选择FFT运算的窗函数。

格式: :MATH:FFT:WINDow <source>

:MATH:FFT:WINDow?

其中, <source>, 离散型, {RECTangle | HAMMing | BLACkman | HANNing} 。

返回格式: 查询返回"RECTangle"、"HAMMing"、"BLACkman"或 "HANNing"。

举例:

下面的命令选择 HANNing 窗函数。

:MATH:FFT:WINDow HANNing

下面的查询返回"HANNing"。

:MATH:FFT:WINDow?

3. 2. 5. 5. 3 :MATH:FFT:TYPE

功能: 选择 FFT 波形的显示方式"线性"或"对数"。

格式: :MATH:FFT:TYPE <type>

:MATH:FFT:TYPE?

其中, <type>, 离散型, {LINE | DB}。

返回格式: 查询返回"LINE"或"DB"。

举例:

下面的命令选择对数显示方式。

:MATH:FFT:TYPE DB

下面的查询返回"DB"。

:MATH:FFT:TYPE?

3.2.5.5.4 :MATH:FFT:VSCale

功能:设置 FFT 运算结果的垂直档位。

格式: :MATH:FFT:VSCale <extent>

:MATH:FFT:VSCale?

其中,〈 extent 〉,实型,〈 extent 〉,实型,line 时, $\{1e-15^5e14, 只能以1、2、5、步进}$ 或者 db 时 $\{1^500, 1、2、5 步进\}$ 。。

返回格式:查询以科学计数形式返回档位值。

举例:

下面的命令设置 FFT 运算结果的垂直档位为 1。

:MATH:FFT:VSCale 1

下面的查询返回"1.000000e+00"。

:MATH:FFT:VSCale?

3. 2. 5. 5. 5: MATH: FFT: VPOSition

功能:设置FFT运算结果的垂直偏移。

格式::MATH:FFT:VPOSition <position>

:MATH:FFT:VPOSition?

其中, 〈positionoffset〉, 实型, 科学计数法表示。

3. 2. 5. 5. 6:MATH:FFT:HSCale

功能:设置 FFT 运算结果的水平档位。

格式: :MATH:FFT:HSCale <hscale>

:MATH:FFT:HSCale?

其中, 〈 hscale〉, 实型, {1Hz~100MHz, 1、2、5 步进}。

返回格式:查询以科学计数形式返回档位值。

举例:

下面的命令设置 FFT 运算结果的水平档位为 1。

:MATH:FFT:HSCale 1

下面的查询返回"1.000000e+00"。

:MATH:FFT:HSCale?

3. 2. 5. 5. 7:MATH:FFT:HPOSition

功能:设置 FFT 运算结果的水平偏移。

格式::MATH:FFT:HPOSition <position >

:MATH:FFT:HPOSition?

其中, < position >, 实型,

返回格式:查询以科学计数形式返回偏移值。

举例:

下面的命令设置水平偏移为2Hz。

:MATH:FFT:HPOSition 2

下面的查询返回"2.000000e0"

:MATH:FFT:HPOSition?

3. 2. 5. 6:MATH:AX+B

3. 2. 5. 6. 1 :MATH: AX+B: SOURce

功能:选择 AX+B 运算的信源 Source.

格式: :MATH:AX+B:SOURce <source>

:MATH:AX+B:SOURce?

其中, <source>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

返回格式: 查询返回 "CH1" 、 "CH2" 、 "CH3" 或 "CH4"。

举例:

下面的命令选择通道1作为信源.

:MATH:AX+B:SOURce CH1

下面的查询返回"CH1"。

:MATH:AX+B:SOURce?

3. 2. 5. 6. 2 :MATH: AX+B: A

功能:选择 AX+B 中 A 的值.

格式: :MATH:AX+B:A <a>

:MATH:AX+B:A?

其中, <a>, 实型, 范围请参考手册。

返回格式:查询返回实型数值。

举例:

下面的命令设置 A 的数值.

:MATH:AX+B:A 2

下面的查询返回"2"。

:MATH:AX+B:A?

3. 2. 5. 6. 3:MATH: AX+B:B

功能: 选择 AX+B 中 B 的值.

格式::MATH:AX+B:B

:MATH:AX+B:B?

其中, 〈b〉, 实型, 范围请参考手册。

返回格式:查询返回实型数值。

举例:

下面的命令设置 B 的数值.

:MATH:AX+B:B 100

下面的查询返回"100"。

:MATH:AX+B:B?

3. 2. 5. 6. 4:MATH:AX+B:UNIT <unit>

功能: 选择 AX+B 中的单位.

格式: :MATH:AX+B:UNIT <unit>

:MATH:AX+B:UNIT?

其中, 〈unit〉, 字符串, 范围参考数据手册。

返回格式:查询返回实型数值。

举例:

下面的命令 math 的单位.

:MATH:AX+B:UNIT W

下面的查询返回"W"。

:MATH:AX+B:UNIT?

3. 2. 5. 6. 5 :MATH: AX+B: VSCale

功能:设置运算结果的垂直档位。

格式: :MATH:AX+B:VSCale <extent>

:MATH:AX+B:EXTent?

其中, < extent >, 实型, {1e-15~5e14, 只能以 1、2、5、步进}。

返回格式:查询以科学计数形式返回档位值。

举例:下面的命令设置逻辑运算结果的垂直档位为1.

:MATH:AX+B:VSCale 1

下面的查询返回"1.000000e+00"。

:MATH:AX+B:VSCale?

3. 2. 5. 6. 6 :MATH: AX+B: VPOSiton

功能:设置运算结果的垂直偏移。

格式::MATH:AX+B:VPOSiton <position>

:MATH:AX+B:VPOSiton?

其中, 〈position〉, 实型, 科学计数法表示。

3. 2. 5. 7 :MATH: ADVanced

3. 2. 5. 7. 1 :MATH: ADVanced: EXPRession

功能:设置高级运算的表达式。

格式::MATH:ADVanced:EXPRession <string>

:MATH:ADVanced:EXPRession?

其中, 〈string〉, ASCII 字符串。

返回格式:查询以字符串形式返回当前的表达式。

举例:

下面的命令设置表达式为"CH1+CH2"。

:MATH:ADVanced:EXPRession CH1+CH2

下面的查询返回"CH1+CH2"。

:MATH:ADVanced:EXPRession?

3. 2. 5. 7. 2 :MATH: ADVanced: VAR1

功能: 设置高级运算表达式中的变量 1.

格式: :MATH:ADVanced:VAR1 <value>

其中, 〈value〉, 实型, -9.9999E+9 至 9.9999E+9, 具体范围请参考数据手册。

返回格式:查询以科学计数形式返回当前变量1的值。

举例:下面的命令设置变量1的值为100.

:MATH:ADVanced:VAR1 100

下面的查询返回"1.000000e+02"。

:MATH:ADVanced:VARiable1?

3. 2. 5. 7. 3:MATH: ADVanced: VAR2

功能: 设置高级运算表达式中的变量 2

格式: :MATH: ADVanced: VAR2 <value>

其中, 〈value〉, 实型, -9.9999E+9 至 9.9999E+9, 具体范围请参考数据手册。

返回格式:查询以科学计数形式返回当前变量2的值。

举例:下面的命令设置变量2的值为100.

:MATH:ADVanced:VAR2 100

下面的查询返回"1.000000e+02"。

:MATH:ADVanced:VAR2?

3. 2. 5. 7. 4 :MATH:ADVanced:VSCale

功能: 设置高级运算结果的垂直档位。

格式: :MATH: ADVanced: VSCale <extent>

:MATH:ADVanced:VSCale?

其中, < extent >, 实型, {1e-15~5e14, 只能以 1、2、5、步进}。。

返回格式:查询以科学计数形式返回档位值。

举例:

下面的命令设置高级运算结果的垂直档位为1.

:MATH:ADVanced:VSCale 1

下面的查询返回"1.000000e+00"。

:MATH:ADVanced:VSCale?

3. 2. 5. 7. 5 : MATH: ADVanced: VPOSiton 功能: 设置高级运算果的垂直偏移。

格式: :MATH:ADVanced:VPOSiton <postion>

:MATH:ADVanced:VPOSiton?

其中, 〈positon〉, 实型, 科学计数法表示。

3. 2. 5. 7. 6:MATH:ADVanced:UNIT <unit>

功能:选择 ADVanced 中的单位.

格式: :MATH: ADVanced: UNIT <unit>

:MATH:ADVanced:UNIT?

其中, 〈unit〉, 字符串。

返回格式:查询返回实型数值。

举例:

下面的命令 math 的单位.

:MATH:ADVanced:UNIT W

下面的查询返回"W"。

:MATH:ADVanced:UNIT?

3. 2. 5. 8:MATH:SRATe?

查询数学波形的采样率,返回值以科学计数法表示

举例:

下面的查询返回"2.500000e8"。

:MATH:SRATe?

3. 2. 5. 9:MATH:DEPth?

查询数学波形的点数,返回值以科学计数法表示

举例:

下面的查询返回"7.000000e2"。

:SAMPleACQuire:MATH:DEPth?

3.2.6 光标命令子系统

3. 2. 6. 1 :CURSor:HORizontal

功能: 打开或关闭水平光标功能。

格式: :CURSor:HORizontal <bool>

:CURSor:HORizontal?

其中, <bool>, 布尔型, {{0|0FF}|{1|0N}}。

3. 2. 6. 2 : CURSor: VERTical

功能: 打开或关闭垂直光标功能。

格式: :CURSor:VERTical <bool>

:CURSor:VERTical?

其中, <bool>, 布尔型, {{0|0FF}|{1|0N}}。

3. 2. 6. 3 :CURSor:CX1

功能:设置垂直光标 X1 的位置。

格式::CURSor:CX1 <px>

:CURSor:CX1?

其中, 〈px〉, 整型, 以像素为单位。

返回格式:查询返回一个整数。

举例:

下面的命令设置垂直光标 X1 的水平位置为"100"。

:CURSor:CX1 100

下面的查询翻译"100"。

:CURSor:CX1?

3. 2. 6. 4 : CURSor: CX2

功能:设置垂直光标 X2 的位置。

格式::CURSor:CX2<px>

:CURSor:CX2?

其中, 〈px〉, 整型, 以像素为单位。

返回格式:查询返回一个整数。

举例:

下面的命令设置垂直光标 X2 的水平位置为"100"。

:CURSor:CX2 100

下面的查询翻译"100"。

:CURSor:CX2?

3. 2. 6. 5 : CURSor: CY1

功能:设置水平光标1的位置。

格式::CURSor:CY1<px>

:CURSor:CY1?

其中, 〈px〉, 整型, 以像素为单位。

返回格式:查询返回一个整数。

举例:

下面的命令设置水平光标 Y1 的垂直位置为"100"。

:CURSor:CY1100

下面的查询翻译"100"。

:CURSor:CY1?

3. 2. 6. 6 : CURSor: CY2

功能:设置水平光标2的位置。

格式::CURSor:CY2<px>

:CURSor:CY2?

其中, 〈px〉, 整型, 以像素为单位。

返回格式:查询返回一个整数。

举例:

下面的命令设置水平光标 Y2 的垂直位置为"100"。

:CURSor:CY2 100

下面的查询翻译"100"。

:CURSor:CY2?

3. 2. 6. 7 : CURSor: X1Value

功能: 查询垂直光标 X1 的 x 值。

格式: :CURSor:X1Value?

查询值的单位由当前水平单位决定。

返回格式:查询以科学计数形式返回光标 X1 处的 X 值。

举例:

下面的查询返回 "-0.000000e-02"

:CURSor:X1Value?

3. 2. 6. 8 : CURSor: X2Value

功能: 查询垂直光标 X2 的 x 值。

格式: :CURSor:X2Value?

查询值的单位由当前水平单位决定。

返回格式:查询以科学计数形式返回光标 X2 处的 X 值。

举例:

下面的查询返回"-0.000000e-02"

:CURSor:X2Value?

3. 2. 6. 9 : CURSor: Y1Value

功能: 查询水平光标 Y1 的 y 值。

格式: :CURSor:Y1Value?

查询值的单位由当前垂直单位决定。

返回格式:查询以科学计数形式返回光标 A 处的 Y 值。

举例:

下面的查询返回 "-0.000000e-02"

:CURSor:YAValue?

3. 2. 6. 10 : CURSor: Y2Value

功能: 查询水平光标 Y2 的 y 值。

格式: :CURSor:Y2Value?

查询值的单位由垂直单位决定。

返回格式:查询以科学计数形式返回光标 B 处的 Y 值。

举例:

下面的查询返回"-0.000000e-02"

:CURSor:Y2Value?

3. 2. 6. 11 :CURSor:XDELta

功能:查询垂直光标 X1 和 X2 之间的差值 Δ ,单位与水平单位相同。

格式: :CURSor:XDELta?

返回格式:查询以科学计数形式返回当前差值 ΔX 。

举例:

下面的查询返回"1.000000e-03"。

:CURSor:XDELta?

3. 2. 6. 12 : CURSor: YDELta

功能: 查询水平光标 Y1 和 Y2 之间的差值 Δ , 单位与垂直单位相同。

格式: :CURSor:YDELta?

返回格式:查询以科学计数形式返回当前差值ΔX。

举例:

下面的查询返回"1.000000e-03"。

:CURSor:YDELta?

3. 2. 6. 13 : CURSor: FREQ?

功能: 查询垂直光标 X1 和 X2 之间的 $1/\Delta$, 单位为 Hz。

格式::CURSor:FREQ?

返回格式:查询以科学计数形式返回当前数值。

举例:

下面的查询返回"1.000000e 03"。

:CURSor:FREQ?

3. 2. 6. 14: CURSor: RATIo

功能: 查询水平光标 A 和 B 之间的差值 Δ 与垂直光标 A 和 B 之间的差值 Δ 之间的比值。

格式: :CURSor:RATIo?

返回格式:查询以科学计数形式返回的值。

举例:

下面的查询返回"3.200000e-02"。

:CURSor:RATio?

3. 2. 6. 15 : CURSor: SOURce

功能:设置光标测量的通道源。

格式: :CURSor:SOURce <source>

:CURSor:SOURce?

其中, <source>, 离散型, {CH1 | CH2 | CH3 | CH4 | R1 | R2 | R3 | R4 | MATH | AUTO}。

返回格式: 查询返回 "CH1"、"CH2"、"CH3"、"CH4"、"R1"、 "R2"、"R3"、"R4"、或"MATH"。

举例:

下面的命令设置通道1为测量源。

:CURSor:SOURce CH1

下面的查询返回"CH1"。

:CURSor:SOURce?

3. 2. 6. 16 相位光标

3. 2. 6. 16. 1 :PHCUrsor [\langle bool\rangle, \langle src1\rangle, \langle src2\rangle]

功能: 打开/关闭/查询相位光标并设置相关参数。

格式::PHCUrsor [<bool>, <src1>, <src2>]

:PHCUrsor?

其中, $\langle boo1 \rangle$, $\langle boo1 \rangle$,布尔型, $\{\{0 | OFF\} | \{1 | ON\}\}; \langle src1 \rangle$,整型,表示设置的气缸数量; $\langle src2 \rangle$,整型,表示设置的角度,一般为 180 的倍数;

返回格式: 查询返回 相应参数。

举例:

下面的命令打开相位光标,并将光标设置为4缸,720度。

:PHCUrsor 1, 4, 720

下面的查询返回"1,4,720"。

:PHCUrsor?

3. 2. 6. 16. 2 :PHCUrsor:X0 <px>,

功能:设置或者查询0度光标线的像素位置。

格式: :PHCUrsor:X0 <px>

:PHCUrsor:X0?

其中, 〈px〉, 整型, 表示 0 度光标线在屏幕上的像素位置, 以屏幕左侧为基准;

返回格式:查询返回0度光标线在屏幕上的像素位置。

举例:

下面的命令设置0度光标线的位置为100像素。

:PHCUrsor:X0 100

下面的查询返回"100"。

:PHCUrsor:X0?

3. 2. 6. 16. 3: PHCUrsor: XN <px>,

功能: 设置或者查询最后一根光标线的像素位置。

格式::PHCUrsor:XN <px>

:PHCUrsor:XN?

其中, 〈px〉, 整型, 表示最后一根光标线的像素位置, 以屏幕左侧为基准;

返回格式:查询返回最后一根光标线在屏幕上的像素位置。

举例:

下面的命令设置最后一根光标线的位置为200像素。

:PHCUrsor:XN 200

下面的查询返回"200"。

3.2.7显示命令子系统

3. 2. 7. 1 :DISPlay: WAVeform

功能:设置屏幕中波形的显示方式,"点显示"或"线显示"。

格式: :DISPlay:WAVeform <type>

:DISPlay:WAVeform?

其中, <type>, 离散型, {VECTors | DOTS}。

返回格式: 查询返回 "VECTors"或 "DOTS"。

举例:

下面的命令设置波形显示方式为"DOTS"。

:DISPlay:WAVeform DOTS

下面的查询返回"DOTS"。

:DISPlay:WAVeform?

3. 2. 7. 2 :DISPlay:BRIGhtness

功能: 设置屏幕中波形显示的亮度。

格式: :DISPlay:BRIGhtness <time>

:DISPlay:BRIGhtness?

其中, <time>, 整型, 0至100.

返回格式:查询返回整数。

举例:

下面的命令设置波形显示的亮度为80.

:DISPlay:BRIGhtness 80

下面的查询返回"80"。

:DISPlay:BRIGhtness?

3. 2. 7. 3 :DISPlay:GRATicule

功能: 设置屏幕显示的网格类型。

格式: :DISPlay:GRATicule <type>

:DISPlay:GRATicule?

其中, <type>, 离散型, {FULL | GRID | RETical | FRAMe}。

返回格式: 查询返回 "FULL"、 "GRID"、 "RETical"或 "FRAMe"。

举例:

下面的命令色织屏幕网格类型为 FULL.

:DISPlay:GRATicule FULL

下面的查询返回"FULL"。

:DISPlay:GRATicule?

3. 2. 7. 4 :DISPlay: INTEnsity

功能: 设置屏幕中网格显示的亮度。

格式: :DISPlay:INTEnsity <time>

:DISPlay:INTEnsity?

其中, 〈time〉, 整型, 0至100.

返回格式:查询返回整数。

举例:

下面的命令设置屏幕网格的亮度为80.

:DISPlay:INTEnsity 80

下面的查询返回"80"。

:DISPlay:INTEnsity?

3. 2. 7. 5 :DISPlay:PERSist

3.2.7.5.1 :DISPlay:PERSist:MODE

功能:设置余辉显示模式。

格式: :DISPlay:PERSist:MODE <mode>

:DISPlay:PERSist:MODE?

其中, <mode>, 离散型, {AUTO|NORMal|INFinite|none}。

3. 2. 7. 5. 2 :DISPlay:PERSist:ADJust

功能: 设置余辉普通显示模式下余辉时间

格式: :DISPlay:PERSist:ADJust <time>

:DISPlay:PERSist:ADJust?

其中, <time>,整型,以ms为单位, 100,200,300,400,500,600,700,800,900,1000,2000,3000,4000,5000,6000,7000, 8000,9000,10000

3. 2. 7. 5. 3 :DISPlay:PERSist:CLEar

功能:清除余辉显示

格式: :DISPlay:PERSist:CLEar

3.2.7.6 :DISPlay:HIGH(在有独立高刷新模式的机器里有效)

功能: 打开或关闭高刷新

格式: :DISPlay:HIGH <bool>

:DISPlay:HIGH?

其中, <bool>, 布尔型, {{0|0FF}|{1|0N}}。

3. 2. 7. 7 :DISPlay:HORRef

功能:设置屏幕水平展开中心模式,"触发点"或"屏幕中心"。

格式: :DISPlay:HORRef <mode>

:DISPlay:HORRef?

其中, <mode>, 离散型, {CENTer | TRIGpos}。

3. 2. 7. 8:DISPlay:ZOOM

功能: 打开或关闭 ZOOM

格式: :DISPlay:ZOOM <bool>

:DISPlay:ZOOM?

其中, <bool>, 布尔型, {{0|0FF}|{1|0N}}。

3. 2. 7. 9:DISP1ay:CCT

功能: 打开或关闭色温显示

格式: :DISPlay:CCT <bool>

:DISPlay:CCT?

其中, <bool>, 布尔型, {{0|0FF}|{1|0N}}。

3.2.8 测量命令子系统

3. 2. 8. 1 :MEASure: OPEN [$\langle item \rangle$, $\langle n1 \rangle$, $\langle n2 \rangle$, $\langle src1 \rangle$, $\langle src2 \rangle$]

功能: 在界面上添加指定通道的测量项

格式: :MEASure:OPEN [<item>, <n1>, <n2>, <src1>, <src2>]

说明:其中,<item>离散型,指测量项,{PERiod|FREQ|RISEtime|FALLtime|DELAy|PDUTy|NDUTy|PWIDth|NWIDth|BURStw|ROV|FOV|PHASe|PKPK|AMP|HIGH|LOW|MAX|MIN|RMS|CRMS|MEAN|CMEAn|ACRMS|+RATE|-RATE|。

<n1>指源, 离散型, {CH1 | CH2 | CH3 | CH4 | R1 | R2 | R3 | R4 | MATH}。

<n2>指源,在 DELay、PHASe 的时候有效,离散型, {CH1 | CH2 | CH3 | CH4 | R1 | R2 | R3 | R4 | MATH}。

<src1>指部分测量项的参数,在 DELay 的时候有效,离散型, [FRISe|FFALL|LRISe|LFALL]。

<src2>指部分测量项的参数,在 DELay 的时候有效,离散型, [FRISe|FFALL|LRISe|LFALL]。

举例:

下面的设置在屏幕上打开通道1的周期测量

:MEASure:OPEN PERiod, CH1

下面的设置在屏幕上打开通道 2 第一个上升沿对通道 3 第一个上升沿的 延迟测量

:MEASure:OPEN DELay CH2, CH3, FRISe, FRISe

3. 2. 8. 2 :MEASure: $\langle item \rangle$? [$\langle n1 \rangle$, $\langle n2 \rangle$, $\langle src1 \rangle$, $\langle src2 \rangle$]

功能: 查询处于打开状态的测量项的数值

格式: :MEASure: <item>? [<n1>, <n2>, <src1>, <src2>]

说明:其中,<item>离散型,指测量项,{PEROid|FREQ|RISEtime|FALLtime | DELAy|PDUTy|NDUTy|PWIDth|NWIDth|BURStw|ROV|FOV|PHASe|PKPK|AMP|HIGH|LOW | MAX|MIN|RMS|CRMS|MEAN|CMEAN|ACRMS|+RATE|-RATE }。

<n1>指源, 离散型, {CH1 | CH2 | CH3 | CH4 | R1 | R2 | R3 | R4 | MATH}。

<n2>指源,在 DELay、PHASe 的时候有效,其他时候无效,可不写,离散型, {CH1 | CH2 | CH3 | CH4 | R1 | R2 | R3 | R4 | MATH}。

<src1>指部分测量项的参数,在 DELay 的时候有效,离散型, [FRISe|FFALL|LRISe|LFALL]。

<src2>指部分测量项的参数,在 DELay 的时候有效,离散型, [FRISe|FFALL|LRISe|LFALL]。

举例: 在通道 1 的周期测量处于打开的状态下,下面的设置查询通道 1 的周期测量数值

:MEASure:PERiod? CH1

3. 2. 8. 3 :MEASure: CLOSe [$\langle item \rangle$, $\langle n1 \rangle$, $\langle n2 \rangle$, $\langle src1 \rangle$, $\langle src2 \rangle$]

功能: 在界面上删除指定处于打开状态的通道的测量项

格式: :MEASure:CLOSe [<item>, <n1>, <n2>, <src1>, <src2>]

说明:其中, <item>离散型,指测量项,{PEROid|FREQ|RISEtime|FALLtime|DELAy|PDUTy|NDUTy|PWIDth|NWIDth|BURStw|ROV|FOV|PHASe|PKPK|AMP|HIGH|LOW|MAX|MIN|RMS|CRMS|MEAN|CMEAn|ACRMS|+RATE|-RATE|.

<n1>指源, 离散型, {CH1 | CH2 | CH3 | CH4 | R1 | R2 | R3 | R4 | MATH}。

<n2>指源,在 DELay、PHASe 的时候有效,离散型, {CH1 | CH2 | CH3 | CH4 | R1 | R2 | R3 | R4 | MATH}。

<src1>指部分测量项的参数,在 DELay 的时候有效,离散型, [FRISe|FFALL|LRISe|LFALL]。

<src2>指部分测量项的参数,在 DELay 的时候有效,离散型, [FRISe|FFALL|LRISe|LFALL]。

举例:

下面的设置在屏幕上关闭通道1的 周期测量

:MEASure:CLOSe PERiod, CH1

3. 2. 8. 4:MEASure:CLEar<item0/item1..../item10/ all>

功能:清除打开的测量项中的所有项。

格式: :MEASure:CLEar <item>

其中, <item>, 离散型, { item1 | item 2 | item 3 | item 4 | item 5 | item 6 | item 7 | item 8 | item 9 | item 10 | all}。

1~10 分别对应屏幕上的 10 个测量选项。

3.2.8.5 :MESAure:STATistic

3.2.8.5.1 :MEASure:STATistic:DISPlay

功能: 打开或关闭统计功能。

格式: :MEASure:STATistic:DISPlay <bool>

:MEASure:STATistic:DISPlay?

其中, <bool>, 布尔型, {{0|0FF}|{1|0N}}。

3. 2. 8. 5. 2 :MEASure:STATistic:RESet

功能:清楚历史统计数据并重新统计。

格式: :MEASure:STATistic:RESet

3.2.8.5.3 :MEASure:STATistic:MEAN <bool>

功能: 打开或关闭统计中的平均值显示

格式: :MEASure:STATistic:MEAN <bool>

:MEASure:STATistic:MEAN?

其中, <bool>, 布尔型, {{0|0FF}|{1|0N}}。

3.2.8.5.4 :MEASure:STATistic:MAX <bool>

功能: 打开或关闭统计中的最大值显示

格式: :MEASure:STATistic:MAX <bool>

:MEASure:STATistic:MAX?

其中, <bool>, 布尔型, {{0|0FF}|{1|0N}}。

3.2.8.5.5 :MEASure:STATistic:MIN <bool>

功能: 打开或关闭统计中的最小值显示

格式: :MEASure:STATistic:MIN <bool>

:MEASure:STATistic:MIN?

其中, <bool>, 布尔型, {{0|0FF}|{1|0N}}。

3.2.8.5.6 :MEASure:STATistic:DEV <bool>

功能: 打开或关闭统计中的均方差显示

格式: :MEASure:STATistic:DEV <bool>

:MEASure:STATistic:DEV?

其中, <bool>, 布尔型, {{0|0FF}|{1|0N}}。

3.2.8.5.7 :MEASure:STATistic:COUNt <bool>

功能: 打开或关闭统计中的计数显示

格式: :MEASure:STATistic:COUNt <bool>

:MEASure:STATistic:COUNt?

其中, <bool>, 布尔型, {{0|0FF}|{1|0N}}。

3. 2. 8. 5. 8 :MEASure:STATistic:VIEW?

功能: 询问统计项目的所有数值(统计功能打开有效)

格式: :MEASure:STATistic:VIEW? <item>, <source>

其中, < item >, 已经打开的测量项, <source>, 离散型,测量源 {CH1 | CH2 | CH3 | CH4 | R1 | R2 | R3 | R4 | MATH}。

说明: <source>可省略,默认为示波器当前指定的通道源。

返回格式:查询返回数值以科学计数法显示,依次为当前值、平均值、最大值、最小值、均方根、计数。

举例: 下面的查询呢返回通道 1 的峰峰测量值的统计数据,如: 1.000007e-02, 1.000005e-02, 1.000009e-02, 1.000001e-02, 1.000000e-02, 1.75e02,

:MEASure:STATistic:VIEW? PKPK, CH1

如果当前示波器设置的测量源也是通道1,则直接使用下面的命令:

:MEASure:STATistic:VIEW? PKPK

3.2.8.5.9 :MEASure: STATistic:MEAN:VIEW?

功能: 询问统计项目的平均值(统计功能打开有效)

格式::MEASure: STATistic:MEAN:VIEW? <item>, <source>

其中, < item >, 已经打开的测量项, <source>, 离散型,测量源 {CH1|CH2|CH3|CH4|R1|R2|R3|R4|MATH}。

说明: <source>可省略,默认为示波器当前指定的通道源。

返回格式:查询返回数值以科学计数法显示。

举例:下面的查询呢返回通道 1 的峰峰测量值的统计计算的平均值,如: 1.000007e-02

:MEASure: STATistic:MEAN:VIEW? PKPK, CH1

如果当前示波器设置的测量源也是通道1,则直接使用下面的命令:

:MEASure: STATistic:MEAN:VIEW? PKPK,

3. 2. 8. 5. 10: MEASure: STATistic: MAX: VIEW?

功能: 询问统计项目的最大值(统计功能打开有效)

格式::MEASure: STATistic:MAX:VIEW? <item>, <source>

其中, < item >, 已经打开的测量项, <source>, 离散型,测量源 {CH1 | CH2 | CH3 | CH4 | R1 | R2 | R3 | R4 | MATH}。

说明: 〈source〉可省略, 默认为示波器当前指定的通道源。

返回格式:查询返回数值以科学计数法显示。

举例: 下面的查询呢返回通道 1 的峰峰测量值的统计计算的 最大值,如: 1.000007e-02

:MEASure: STATistic:MAX:VIEW? PKPK, CH1

如果当前示波器设置的测量源也是通道 1,则直接使用下面的命令:

:MEASure: STATistic:MAX:VIEW? PKPK,

3. 2. 8. 5. 11: MEASure: STATistic: MIN: VIEW?

功能: 询问统计项目的最小值(统计功能打开有效)

格式: :MEASure: STATistic:MIN:VIEW? <item>, <source>

其中, < item >, 已经打开的测量项, <source>, 离散型, 测量源 {CH1 | CH2 | CH3 | CH4 | R1 | R2 | R3 | R4 | MATH}。

说明: <source>可省略,默认为示波器当前指定的通道源。

返回格式:查询返回数值以科学计数法显示。

举例: 下面的查询呢返回通道 1 的峰峰测量值的统计计算的 最小值,如: 1.000007e-02

:MEASure: STATistic:MIN:VIEW? PKPK, CH1

如果当前示波器设置的测量源也是通道 1,则直接使用下面的命令:

:MEASure: STATistic:MIN:VIEW? PKPK,

3. 2. 8. 5. 12 :MEASure: STATistic:DAV:VIEW?

功能: 询问统计项目的均方差(统计功能打开有效)

格式::MEASure: STATistic:DAV:VIEW? <item>, <source>

其中, < item >, 已经打开的测量项, <source>, 离散型,测量源 {CH1 | CH2 | CH3 | CH4 | R1 | R2 | R3 | R4 | MATH}。

说明: 〈source〉可省略, 默认为示波器当前指定的通道源。

返回格式:查询返回数值以科学计数法显示。

举例: 下面的查询呢返回通道 1 的峰峰测量值的统计计算的 均方差,如: 1.000007e-02

:MEASure: STATistic:DAV:VIEW? PKPK, CH1

如果当前示波器设置的测量源也是通道 1,则直接使用下面的命令:

:MEASure: STATistic:DAV:VIEW? PKPK,

3.2.8.5.13 :MEASure: STATistic:COUNt:VIEW?

功能: 询问统计项目的统计数量(统计功能打开有效)

格式: :MEASure: STATistic:COUNt:VIEW? <item>, <source>

其中, < item >, 已经打开的测量项, <source>, 离散型, 测量源 {CH1 | CH2 | CH3 | CH4 | R1 | R2 | R3 | R4 | MATH}。

说明: <source>可省略,默认为示波器当前指定的通道源。

返回格式:查询返回数值以科学计数法显示。

举例: 下面的查询呢返回通道 1 的峰峰测量值的统计计算的 统计数量,如: 1.000007e-02

:MEASure: STATistic:COUNt:VIEW? PKPK, CH1

如果当前示波器设置的测量源也是通道 1,则直接使用下面的命令:

:MEASure: STATistic:COUNt:VIEW? PKPK,

3. 2. 8. 5. 14 : MEASure: STATistic: CURRent: VIEW?

功能: 询问统计项目的当前值(统计功能打开有效)

格式: :MEASure:STATistic:CURRent:VIEW? <item>, <source>

其中, < item >, 已经打开的测量项, <source>, 离散型,测量源 {CH1 | CH2 | CH3 | CH4 | R1 | R2 | R3 | R4 | MATH}。

说明: 〈source〉可省略, 默认为示波器当前指定的通道源。

返回格式:查询返回数值以科学计数法显示。

举例: 下面的查询呢返回通道 1 的峰峰测量值的统计计算的 平均值,如: 1.000007e-02

:MEASure: STATistic:CURRent:VIEW? PKPK, CH1

如果当前示波器设置的测量源也是通道1,则直接使用下面的命令:

:MEASure: STATistic:CURRent:VIEW? PKPK,

3. 2. 8. 6 :MEASure: ADISplay

功能: 打开或关闭全部测量。

格式: :MEASure:ADISplay <bool>

:MEASure:ADISplay?

其中, <bool>, 布尔型, {{0|0FF}|{1|0N}}。

3. 2. 8. 7 :MEASure: COUNter

3. 2. 8. 7. 1:MEASure:COUNter:SOURce

功能: 设置或查询计数器的测量源。

:MEASure:COUNter:SOURce<sour>

:MEASure:COUNter:SOURce?

其中, 〈sour〉, 离散型, {CLOSe | CH1 | CH2 | CH3 | CH4 }。

3.2.8.7.2 :MEASure:COUNter:MODE <mode>

3. 2. 8. 7. 3 :MEASure:COUNter:VALue?

功能: 查询计数器的测量结果。

:MEASure:COUNter:VALue?

查询以科学计数形式返回当前测量值。若当前未打开频率计功能,则返回 0.0000000e+00

3.2.9 触发命令子系统

3. 2. 9. 1 : TRIGger: TYPE

功能:选择触发类型。

格式::TRIGger:TYPE <type>

:TRIGger:TYPE?

其中, <type>, 离散型, { EDGE|PULSe|LOGic|NEDGe|DWARt|SLOPe|TIMEout|VIDeo|S1|S2}

返回格式:查询返回当前使用的触发类型。

举例:

下面的命令选择边沿触发。

:TRIGger:TYPE EDGE

下面的查询返回"EDGE"。

:TRIGger:TYPE?

3. 2. 9. 2 :TRIGger:HOLDoff

功能:设置触发释抑时间。

格式: :TRIGger:HOLDoff <value>

:TRIGger:HOLDoff?

其中, <value>, 实型, 200ns 至 10s。

返回格式:查询以科学计数形式返回触发释抑时间。

举例:

下面的命令设置触发释抑时间为 200ns

:TRIGger:HOLDoff 0.0000002

下面的查询返回"2.000000e-07"。

:TRIGger:HOLDoff?

3. 2. 9. 3 TRIGger: MODE

功能:设置触发方式:自动或普通。

格式: :TRIGger:MODE <mode>

:TRIGger:MODE?

其中, <mode>, 离散型, {AUTO | NORMal}。

返回格式: 查询返回 "AUTO"或 "NORMa1"。

举例:

下面的命令选择自动触发模式。

:TRIGger:MODE AUTO

下面的查询返回"AUTO"。

:TRIGger:MODE?

3. 2. 9. 4 :TRIGger:STATus

功能: 查询当前的触发状态。

格式: :TRIGger:STATus?

返回格式: 查询返回 "RUN"、"WAIT"、"AUTO"、"STOP"。

3. 2. 9. 5 : TRIGger: EDGE

3. 2. 9. 5. 1 :TRIGger:EDGE:SOURce

功能: 选择边沿触发的触发源。

格式: :TRIGger:EDGE:SOURce <source>

:TRIGger:EDGE:SOURce?

其中, <source>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

返回格式: 查询返回 "CH1" 、 "CH2" 、 "CH3" 或 "CH4"。

举例:

下面的命令设置通道1为触发源。

:TRIGger:EDGE:SOURce CH1

下面的查询返回"CH1"。

:TRIGger:EDGE:SOURce?

3.2.9.5.2 :TRIGger:EDGE:SLOPe

功能:选择边沿触发的边沿类型。

格式: :TRIGger:EDGE:SLOPe <edge>

:TRIGger:EDGE:SLOPe?

其中, <edge>, 离散型, {RISE|FALL| DUAL }。

返回格式:查询返回"RISE"、"FALL"或"DUAL"。

举例:

下面的命令选择上升沿触发。

:TRIGger:EDGE:SLOPe RISE

下面的查返回"RISE"。

:TRIGger:EDGE:SLOPe?

3. 2. 9. 5. 3 :TRIGger:EDGE:LEVel

功能: 设置边沿触发时的触发电平

格式: :TRIGger:EDGE:LEVel <level>

:TRIGger:EDGE:LEVel?

其中, <level>, 实型。

返回格式:查询以科学计数形式返回触发电平值。

举例:

下面的命令设置触发电平为150mV。

:TRIGger:EDGE:LEVel 0.15

下面的查询返回"1.500000e-01"。

:TRIGger:EDGE:LEVel?

3. 2. 9. 5. 4 :TRIGger:EDGE:COUPle

功能:设置边沿触发耦合方式。

格式: :TRIGger:EDGE:COUPle <couple>

:TRIGger:EDGE:COUPle?

其中, <couple>, 离散型, {DC|AC|HFRej|LFRej|Noiserej}。

返回格式: 查询返回 "DC"、"AC"、"HFRej"、"LFRej"或"Noiserej"。

举例:

下面的命令选择 DC 耦合方式。

:TRIGger:EDGE:COUPle DC

下面的查询返回"DC"。

:TRIGger:EDGE:COUPle?

3. 2. 9. 6 :TRIGger:PULSe

3.2.9.6.1 :TRIGger:PULSe:SOURce

功能:设置脉宽触发的触发源。

格式: :TRIGger:PULSe:SOURce <source>

:TRIGger:PULSe:SOURce

其中, <source>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

返回格式: 查询返回 "CH1" 、 "CH2" 、 "CH3" 或 "CH4"。

举例:

下面的命令设置通道1为触发源。

:TRIGger:PULSe:SOURce CH1

下面的查询返回"CH1"。

:TRIGger:PULSe:SOURce?

3. 2. 9. 6. 2 :TRIGger:PULSe:POLarity

功能:设置脉宽触发的极性。

格式: :TRIGger:PULSe:POLarity <polarity>

:TRIGger:PULSe:POLarity?

其中, <polarity>, 离散型, {POSitive | NEGative}。

返回格式: 查询返回 "POSitive" 或 "NEGative"。

举例:

下面的命令选择上升沿触发。

:TRIGger:PULSe:POLarity POSitive

下面的查返回"POSitive"。

:TRIGger:PULSe:POLarity?

3. 2. 9. 6. 3 :TRIGger:PULSe:WIDTh

功能:设置脉宽触发时的脉冲宽度值。

格式: :TRIGger:PULSe:WIDTh<width>

:TRIGger:PULSe:WIDTh?

其中, <width>, 实型, 40ns 至 10s。

返回格式:查询返回实数。

举例:

下面的命令设置脉宽值为 4ns。

:TRIGger:PULSe:WIDTh 4.000000e-08

下面的查询返回"4.000000e-08"。

:TRIGger:PULSe:WIDTh?

3. 2. 9. 6. 4 :TRIGger:PULSe:CONDition

功能:设置脉宽触发条件。

格式: :TRIGger:PULSe:CONDition<condition>

:TRIGger:PULSe:CONDition?

其中, <condition>, 离散型, {GREat | LESS | EQUal | UNEQual }。

GREat:示波器输入信号脉宽大于指定的脉冲宽度;

LESS: 示波器输入信号脉宽小于指定的脉冲宽度;

EQUal: 示波器输入信号脉宽等于指定的脉冲宽度;

UNEQual: 示波器输入信号脉宽不等于指定的脉冲宽度;

3. 2. 9. 6. 5 :TRIGger:PULSe:LEVel

功能: 设置脉宽触发时的触发电平

格式: :TRIGger:PULSe:LEVel <level>

:TRIGger:PULSe:LEVel?

其中, <level>, 实型。

返回格式:查询以科学计数形式返回触发电平值。

举例:

下面的命令设置触发电平为150mV。

:TRIGger:PULSe:LEVel 0.15

下面的查询返回"1.500000e-01"。

:TRIGger:PULSe:LEVel?

3. 2. 9. 7 : TRIGger: LOGic

3. 2. 9. 7. 1 :TRIGger:LOGic:STATus

功能: 设置逻辑触发中各通道的逻辑状态

格式::TRIGger:LOGic:STATus<channel>, <status>

:TRIGger:LOGic:STATus? <channel>

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4}。 <status>, 离散型, {HIGH | LOW | NONE}。

3.2.9.7.2 :TRIGger:LOGic:FUNCtion **功能**:设置逻辑触发的比较函数。

格式: :TRIGger:LOGic:FUNCtion 〈function〉

:TRIGger:LOGic:FUNCtion?

其中,〈function〉, 离散型, "AND"、"OR"、"NAND"或"NOR"。

3.2.9.7.3 :TRIGger:LOGic:CONDition

功能:设置逻辑触发条件。

格式: :TRIGger:LOGic:CONDition<condition>

:TRIGger:LOGic:CONDition?

其中, <condition>, 离散型, {GREat | LESS | EQUal | UNEQual | TRUE | FALSe } 。

GREat:逻辑状态为真的保持时间大于触发逻辑时间时触发;

LESS: 逻辑状态为真的保持时间小于触发逻辑时间时触发;

EQUal: 逻辑状态为真的保持时间等于触发逻辑时间时触发;

UNEQual: 逻辑状态为真的保持时间不等于触发逻辑时间时触发;

TRUL: 逻辑状态为真时触发;

FALSe: 逻辑状态为假时触发。

3.2.9.7.4 :TRIGger:LOGic:TIME

功能:设置触发逻辑时间。

格式: :TRIGger:LOGic:TIME<time>

:TRIGger:LOGic:TIME?

其中, <time>, 实型, 200ns 至 10s。

3. 2. 9. 7. 5 :TRIGger:LOGic:LEVel

功能: 设置逻辑触发时的各通道触发电平

格式::TRIGger:LOGic:LEVel <channel>, <level>

:TRIGger:LOGic:LEVel? <channel>

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4}; <level>, 实型。

3. 2. 9. 8: TRIGger: Runt

3. 2. 9. 8. 1 :TRIGger:Runt:SOURce

功能:设置欠幅触发的触发源。

格式: :TRIGger:Runt:SOURce <source>

:TRIGger:Runt:SOURce?

其中, <source>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

3.2.9.8.2 :TRIGger:Runt:POLArity

功能:设置欠幅触发的脉冲极性。

格式::TRIGger:Runt:POLArity <polarity>

:TRIGger:Runt:POLArity?

其中, <polarity>, 离散型, {POSItive | NEGAtive | EITHer }。

3. 2. 9. 8. 3 :TRIGger:Runt:CONDition

功能:设置脉宽限制条件。

格式: :TRIGger:Runt:CONDition<condition>

:TRIGger:Runt:CONDition?

其中, <condition>, 离散型, {GREAt | LESS | BETWeen | NONE}。

GREAt:示波器输入信号脉宽大于指定的脉冲宽度;

LESS: 示波器输入信号脉宽小于指定的脉冲宽度;

BETWeen: 示波器输入信号脉宽在指定的脉冲宽度之间;

NONE: 无关;

3. 2. 9. 8. 4 :TRIGger:Runt:HTIMe

功能:设置欠幅触发时的时间上限。

格式::TRIGger:Runt:HTIMe <time>

:TRIGger:Runt:HTIMe?

其中, 〈time〉, 实型, 8ns 至 10s。

3.2.9.8.5 :TRIGger:Runt:LTIMe

功能:设置欠幅触发时的时间下限。

格式: :TRIGger:Runt:LTIMe <time>

:TRIGger:Runt:LTIMe?

其中, 〈time〉, 实型, 8ns 至 10s。

3.2.9.8.6 :TRIGger:Runt:BTIMe

功能:设置欠幅触发时的时间区间。

格式: :TRIGger:Runt:BTIMe <htime>, <ltime>

:TRIGger:Runt:BTIMe? <type>

其中, <htime>, <ltime>, 实型, 8ns 至 10s。(high>low)

< type >, 离散型, {HIGH | LOW }

3. 2. 9. 8. 7 :TRIGger:Runt:HLEVel

功能:设置欠幅触发时的高电平。

格式::TRIGger:Runt:HLEVE1 <level>

:TRIGger:Runt:HLEVE1?

其中, <level>, 实型。

3.2.9.8.8 :TRIGger:Runt:LLEVel

功能:设置欠幅触发时的低电平。

格式: :TRIGger:Runt:LLEVel <level>

:TRIGger:Runt:LLEVel?

其中, <level>, 实型。(HLEVel>LLEVel)

3. 2. 9. 9 : TRIGger: SLOPe

3. 2. 9. 9. 1 :TRIGger:SLOPe:SOURce

功能:设置斜率触发的触发源。

格式: :TRIGger:SLOPe:SOURce <source>

:TRIGger:SLOPe:SOURce?

其中, <source>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

3. 2. 9. 9. 2 :TRIGger:SLOPe:EDGE

功能:设置斜率触发沿。

格式: :TRIGger:SLOPe:EDGE <edge>

:TRIGger:SLOPe:EDGE?

其中, <edge>, 离散型, {RISE|FALL|EITHer}。

3.2.9.9.3 :TRIGger:SLOPe:CONDition

功能:设置斜率触发的限制条件。

格式: :TRIGger:SLOPe:CONDition<condition>

:TRIGger:SLOPe:CONDition?

其中, <condition>, 离散型, {GREat | LESS | BETWeen} 。

GREat:示波器输入信号斜率大于指定的时间设置;

LESS: 示波器输入信号斜率小于指定的时间设置;

BETWeen: 示波器输入信号斜率大于指定的时间上限且小于指定的时间下限。

3. 2. 9. 9. 4 :TRIGger:SLOPe:HTIMe

功能:设置斜率触发时的时间上限。

格式: :TRIGger:SLOPe:HTIMe <time>

:TRIGger:SLOPe:HTIMe?

其中, 〈time〉, 实型, 8ns 至 10s。

3.2.9.9.5 :TRIGger:SLOPe:LTIMe

功能:设置斜率触发时的时间下限。

格式::TRIGger:SLOPe:LTIMe <time>

:TRIGger:SLOPe:LTIMe?

其中, <time>, 实型, 8ns 至 10s。

3. 2. 9. 9. 6 :TRIGger:SLOPe:HLEVel

功能:设置斜率触发时的高电平。

格式: :TRIGger:SLOPe:HLEVel <level>

:TRIGger:SLOPe:HLEVel?

其中, 〈level〉, 实型。

3.2.9.9.7 :TRIGger:SLOPe:LLEVel

功能:设置斜率触发时的低电平。

格式: :TRIGger:SLOPe:LLEVel <level>

:TRIGger:SLOPe:LLEVel?

其中, <level>, 实型。(HLEVel>LLEVel)

3. 2. 9. 10: TRIGger: TIMeout

3. 2. 9. 10. 1 :TRIGger:TIMeout:SOURce

功能:设置超时触发的触发源。

格式: :TRIGger:TIMeout:SOURce <source>

:TRIGger:TIMeout:SOURce?

其中, <source>, 离散型, {CH1 | CH2 | CH3 | CH4}

3.2.9.10.2 :TRIGger:TIMeout:POLarity

功能:设置超时触发极性。

格式::TRIGger:TIMeout:POLarity <polarity>

:TRIGger:TIMeout:POLarity?

其中, < polarity >, 离散型, {POSitive | NEGative | EITHer}。

3.2.9.10.3 :TRIGger:TIMeout:TIME

功能:设置超时触发的超时时间。

格式::TRIGger:TIMeout:TIME <time>

:TRIGger:TIMeout:TIME?

其中, 〈time〉, 实型, 8ns 至 10s。

3. 2. 9. 10. 4 :TRIGger:TIMeout:LEVel

功能:设置超时触发的超触发电平。

格式::TRIGger:TIMeout:LEVel <level>

:TRIGger:TIMeout:LEVel?

其中,〈level〉,实型,范围参考 datasheet。

3. 2. 9. 11: TRIGger: NEDGe

3. 2. 9. 11. 1 :TRIGger: NEDGe: SOURce 功能:设置第 N 边沿触发的触发源。

格式: :TRIGger:NEDGe:SOURce <source>

:TRIGger:NEDGe:SOURce?

其中, <source>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

3. 2. 9. 11. 2 :TRIGger:NEDGe:SLOPe

功能:设置第 N 边沿触发的边沿类型。

格式: :TRIGger:NEDGe:SLOPe <slope>

:TRIGger:NEDGe:SLOPe?

其中, 〈slope〉, 离散型, {RISE | FALL} 。

3. 2. 9. 11. 3 :TRIGger: NEDGe: IDLE

功能:设置第 N 边沿触发中开始边沿计数之前的空闲时间。

格式: :TRIGger:NEDGe:IDLE <time>

:TRIGger:NEDGe:IDLE?

其中, 〈time〉, 实型, 8ns 至 10s。

3. 2. 9. 11. 4 :TRIGger:NEDGe:EDGE

功能:设置第 N 边沿触发的 N 的数值。

格式: :TRIGger:NEDGe:EDGE <number>

:TRIGger:NEDGe:EDGE?

其中, <number>, 实型, 1至65535。

3. 2. 9. 11. 5: TRIGger: NEDGe: LEVel

功能:设置第 N 边沿触发时的触发电平

格式: :TRIGger:NEDGe:LEVel <level>

:TRIGger:NEDGe:LEVel?

其中, <level>, 实型。

3. 2. 9. 12: TRIGger: VIDeo

3. 2. 9. 12. 1 :TRIGger:VIDeo:SOURce

功能:设置视频触发的触发源。

格式::TRIGger:VIDeo:SOURce <source>

:TRIGger:VIDeo:SOURce?

其中, <source>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

3. 2. 9. 12. 2 :TRIGger:VIDeo:POLarity

功能: 设置视频触发的极性

格式: :TRIGger:VIDeo:POLarity <polarity>

:TRIGger:VIDeo:POLarity?

其中, <polarity>, 离散型, {POSItive | NEGAtive}。

3. 2. 9. 12. 3 :TRIGger:VIDeo:STANdard

功能:选择视频触发时的视频标准。

格式: :TRIGger:VIDeo:STANdard <standard>

:TRIGger:VIDeo:STANdard?

其中, 〈standard〉, 离散型, {PAL | SECAm | NTSC | 720P | 1080I | 1080P}。

3. 2. 9. 12. 4 :TRIGger:VIDeo:MODE

功能:选择触发标准为PAL、SECAm、NTSC、1080I时视频触发的同步类型。

格式: :TRIGger:VIDeo:MODE <mode>

:TRIGger:VIDeo:MODE?

其中, <mode>, 离散型, {ODDField|EVENfield|ALLField|ALLLINe|LINE}。

(标黄位置可执行的参数是 EVENfied ALLField ALLLine)

3. 2. 9. 12. 5 :TRIGger:VIDeo: FREQuence

功能:选择触发标准为 1080P 时视频触发的信号频率。

格式::TRIGger:VIDeo:FREQuence <frequence>

:TRIGger:VIDeo:FREQuence?

其中, 〈frequence〉, 离散型, {60Hz | 50Hz | 30Hz | 25Hz | 24Hz} 。

3. 2. 9. 12. 6 :TRIGger:VIDeo:LINE

功能:选择触发的指定触发行。

格式: :TRIGger:VIDeo:LINE <line>

:TRIGger:VIDeo:LINE?

其中, 〈line〉, 实型, l~n, 根据视频类型不同, n 的最大值不同。

3. 2. 9. 13 总线触发命令

此命令执行之前需要注意

- A、打开 S1 或者 S2 的通道
- B、对 S1 或者 S2 进行通道设置
- C、触发类型为 S1 或者 S2
- D、且下述的命令要和设置的 S1 或者 S2 类型相对照; 例如:

打开 S1 和 S2, 设置 S1 为 CAN、S2 为 LIN 设置触发类型为 S1 则下述触发应该设置的为 S1 CAN 类型

3. 2. 9. 13. 1:TRIGger:UART

3. 2. 9. 13. 1. 1 :TRIGger: UART: TYPE

功能:设置 UART 触发的触发条件。

格式::TRIGger:UART:TYPE <s>, <type>

:TRIGger:UART:TYPE? <s>

其中, <s>, 离散型, {S1|S2}; <type>, 离散型, {STARt|STOP|DATA|0:DATA|1:DATA|X:DATA|PARIty}。

当总线设置中总线字长设置为 9bit 时,触发类型 DATA 不能设置;

当总线设置中总线字长设置为 5bit、6bit、7bit、8bit 时,触发类型中 0:DATA、1:DATA、X:DATA 不能进行设置。

返回格式: 查询返回"STARt"、"STOP"、"DATA"、"0:DATA"、 "1:DATA"、"X:DATA"、"PARIty}"。

举例:

下面的命令设置 S1 通道 UART 的 STARt 触发。

:TRIGger:UART:TYPE S1, STARt

下面的查询返回"STARt"。

:TRIGger:UART:TYPE? S1

3. 2. 9. 13. 2: TRIGger: UART: RELAtion

功能: 当 UART 总线触发条件选择为 DATA、0:DATA、1:DATA、X:DATA 时,设置 UART 总线触发关系。

格式: :TRIGger:UART:RELAtion <s>, <RELATION>

:TRIGger:UART:RELAtion? <s>

其中, <s>, 离散型, {S1|S2}; <RELATION>, 离散型, {GREAt|LESS|EQUA1|UNEQua1}。

GREAt:示波器输入数据大于指定的触发数据;

LESS: 示波器输入数据小于指定的触发数据;

EQUA1: 示波器输入数据等于指定的触发数据;

UNEQual: 示波器输入数据不等于指定的触发数据;

返回格式:查询返回"GREAt"、"LESS"、"EQUA1"、"UNEQua1"。

举例:

下面的命令设置 S1 通道 UART 的触发关系为 GREAt。

:TRIGger:UART:RELAtion S1, GREAt

下面的查询返回"GREAt"。

:TRIGger:UART:RELAtion? S1

3. 2. 9. 13. 3: TRIGger: UART: DATA

功能: 当 UART 总线触发条件选择为 DATA、0:DATA、1:DATA、X:DATA 时,设置 UART 总线触发数据。

格式::TRIGger:UART:DATA <s>, <data>

:TRIGger:UART:DATA?

其中, <s>, 离散型, {S1|S2}; <data>, 整型, 16进制, 0至FF。

返回格式:查询返回16进制,0至FF数值。

举例:

下面的命令设置 S1 通道 UART 的 DATA 数值为 AA。

:TRIGger:UART:DATA S1, AA

下面的查询返回"AA"。

:TRIGger:UART:DATA? S1

3. 2. 9. 13. 4:TRIGger:LIN

3. 2. 9. 13. 4. 1:TRIGger:LIN:TYPE

功能:设置 LIN 触发的触发条件。

格式::TRIGger:LIN:TYPE <s>, <type>

:TRIGger:LIN:TYPE?

其中, <s>, 离散型, {S1|S2}; <type>, 离散型, {SRISe|FID|IDATa}。

SRISe, 同步上升沿; FID, 帧 ID; IDATa, 帧 ID 和数据。

返回格式:查询返回"SRISe""FID""IDATa"。

举例:

下面的命令设置 S1 通道的。

:TRIGger:LIN:TYPE S1, SRISe

下面的查询返回"SRISe"。

:TRIGger:LIN:TYPE? S1

3. 2. 9. 13. 4. 2: TRIGger:LIN: ID

功能: 当LIN 总线触发条件为FID 或 IDATa 时,设置LIN 触发的触发 ID 值。

格式::TRIGger:LIN:ID <s>, <data>

:TRIGger:LIN:ID?

其中, 〈s〉, 离散型, {S1 | S2}; 〈data〉, 整型, 16 进制, 0 至 3F。

返回格式:查询返回16进制,0至3F数值。

举例:

下面的命令设置 S1 通道 LIN 的 DATA 数值为 OA。

:TRIGger:LIN:ID S1, OA

下面的查询返回"OA"。

:TRIGger:LIN:ID? S1

3. 2. 9. 13. 4. 3: TRIGger:LIN:DATA

功能: 当 LIN 总线触发条件为 IDATa 时,设置 LIN 触发的触发数据。

格式::TRIGger:LIN:DATA <s>, <data>

:TRIGger:LIN:DATA?

其中, <s>, 离散型, {S1|S2}; <data>, 整型, 16 进制, 0至FFFF, FFFF, FFFF, FFFF。

返回格式: 查询返回 16 进制, 0 至 FFFF, FFFF, FFFF, FFFF 数值。

举例:

下面的命令设置 S1 通道 LIN 的 DATA 数值为 OA。

:TRIGger:LIN:DATA S1, OA

下面的查询返回"OA"。

:TRIGger:LIN:DATA? S1

3. 2. 9. 13. 5:TRIGger:CAN

3. 2. 9. 13. 5. 1: TRIGger: CAN: TYPE

功能:设置 CAN 触发的触发条件

格式::TRIGger:CAN:TYPE <s>,<type>

:TRIGger:CAN:TYPE?

其中, <s>, 离散型, {S1|S2}; <type>, 离散型, {FSTArt|RFID|DFID|RDID|IDATa|WRFR|AERRor|ACKError|OVER1oad}。

FSTArt, 帧起始; RFID, 远程帧 ID; DFID 数据帧 ID; RDID, 远程帧/数据帧 ID; IDATa, 数据帧 ID 和数据; WRFR, 错误帧; AERRor, 所有错误; ACKError, 确认错误; OVERload, 过载帧。

3. 2. 9. 13. 5. 2: TRIGger: CAN: ID

功能: 当 CAN 触发的触发条件为 RFID、DFID、IDATa 或 RDID 时,设置 CAN 触发的触发 ID 值。

格式::TRIGger:CAN:ID <s>, <data>

:TRIGger:CAN:ID?

其中, <s>, 离散型, {S1 | S2}; <data>, 整型, 16 进制, 0 至 7FFF, FFFF。

3. 2. 9. 13. 5. 3: TRIGger: CAN: DLC

功能: 当 CAN 触发的触发条件为 IDATa 时,设置 CAN 触发的 DLC 值。

格式::TRIGger:CAN:DLC <s>, <data>

:TRIGger:CAN:DLC?

其中, <s>, 离散型, {S1|S2}; <data>, 整型, 0至8、12、16、20、26、32、48、64.

3. 2. 9. 13. 5. 4: TRIGger: CAN: DATA

功能: 当 CAN 触发的触发条件为 IDATa 时,设置 CAN 触发的触发数据值。

格式::TRIGger:CAN:DATA <s>, <data>

:TRIGger:CAN:DATA?

其中, <s>, 离散型, {S1 | S2}; <data>, 整型, 16 进制, 数据位数由 DLC 确定。

3. 2. 9. 13. 6:TRIGger:SPI

3. 2. 9. 13. 6. 1 :TRIGger:SPI:DATA

功能:设置 SPI 触发下的数据值。

格式::TRIGger:SPI:DATA <s>, <data>

:TRIGger:SPI:DATA?

其中, <s>, 离散型, {S1 | S2}; <data>, 整型, 二进制。

3. 2. 9. 13. 6. 2 :TRIGger:SPI:TYPE

功能:设置 SPI 触发下的数据值。

格式::TRIGger:SPI:TYPE <s>, <dtype>

:TRIGger:SPI:TYPE?

其中, <s>, 离散型, {S1 | S2}; <type> 离散型, {CS | DATA | X:DATa}

3. 2. 9. 13. 7:TRIGger:IIC

3. 2. 9. 13. 7. 1:TRIGger:IIC:TYPE

功能:设置 IIC 触发的触发类型。

格式::TRIGger:IIC:TYPE <s>, <type>

:TRIGger:IIC:TYPE?

其中, <s>, 离散型, {S1|S2}; <type>, 离散型, {STARt|STOP|ACKLost|NACKaddress|RESTart|RDATa|FRAM1|FRAM2|WRITe10}。

STARt,起始条件;STOP,停止条件;ACKLost,确认丢失;NACKaddress,地址字段无确认;RESTart,重新启动;RDATa,EEPROM数据读取;FRAM1,帧型1;FRAM2,帧型2;WRITe10,10位写帧。

3. 2. 9. 13. 7. 2: TRIGger: IIC: ADDRess

功能: 当 IIC 触发条件为 NACKaddress、FRAM1、FRAM2 或者 WRITe10 时,设置 IIC 总线触发的触发地址。

格式::TRIGger:IIC:ADDRess <s>, <data>

:TRIGger:IIC:ADDRess?

其中, <s>, 离散型, {S1|S2}; <data>, 整型, 16 进制, 0 至 7F (7 位) 或者 0 至 3FF (10 位)。

3. 2. 9. 13. 7. 3: TRIGger: IIC: RELation

功能: 当 IIC 触发条件为 RDATa 时,设置 IIC 总线触发的触发关系。

格式::TRIGger:IIC:RELation <s>, <relation>

:TRIGger:IIC:RELation

其中, <s>, 离散型, {S1|S2}; <RELATION>, 离散型, {GREAt|LESS|EQUA1|UNEQua1}。

GREAt:示波器输入数据大于指定的触发数据;

LESS: 示波器输入数据小于指定的触发数据;

EQUA1: 示波器输入数据等于指定的触发数据;

UNEQual: 示波器输入数据不等于指定的触发数据;

3. 2. 9. 13. 7. 4: TRIGger: IIC: DATA

功能: 当 IIC 触发条件为 RDATa、FRAM1、FRAM2 或者 WRITe10 时,设置 IIC 总线触发的触发数据。

格式::TRIGger:IIC:DATA <s>, <data>

:TRIGger:IIC:DATA?

其中, <s>, 离散型, {S1|S2}; <data>, 整型, 十六进制, 0-FF。

3. 2. 9. 13. 7. 5 :TRIGger:IIC:DATa2

功能;当 IIC 触发条件为 FRAM2 时,设置 IIC 总线触发的触发数据。

格式::TRIGger:IIC:DATa2 <s>, <data>

:TRIGger:IIC:DATa2?

其中, <s>, 离散型, {S1|S2}; <data>, 整型, 十六进制, 0-FF。

3. 2. 9. 13. 8:TRIGger: 1553B

3. 2. 9. 13. 8. 1:TRIGger:1553B:TYPE

功能:设置 1553B 总线触发的触发条件。

格式::TRIGger:1553B:TYPE <s>, <type>

:TRIGger:1553B:TYPE?

其中, <s>, 离散型, {S1|S2}; <type>, 离散型, {CSSYnc|DWSYnc|CSWOrd|DWORd|RTADdress|OPERror|MERRor|AERRor}。

CSSYnc, 指令/状态字同步头; DWSYnc, 数据字同步头; CSWOrd, 指令/状态字; DWORd, 数据字; RTADdress, 远程终端地址; OPERror, 奇校验错误; MERRor, 曼彻斯特码错误; AERRor, 所有错误。

3. 2. 9. 13. 8. 2: TRIGger: 1553B: CSWOrd

功能; 当 1553B 触发条件为 CSWOrd 时,设置 1553B 总线触发的指令/状态字数值。

格式::TRIGger:1553B:CSWOrd <s>, <data>

:TRIGger:1553B:CSWOrd?

其中, <s>, 离散型, {S1|S2}; <data>, 整型, 0至 FFFF。

3. 2. 9. 13. 8. 3:TRIGger:1553B:DWORd

功能: 当 1553B 触发条件为 DWORd 时,设置 1553B 总线触发的触发数据值。

格式::TRIGger:1553B:DWORd <s>, <data>

:TRIGger:1553B:DWORd?

其中, 〈s〉, 离散型, {S1|S2}; 〈data〉, 整型, 0至 FFFF。

3. 2. 9. 13. 8. 4:TRIGger:1553B:RTADdress

功能: 当 1553B 总线触发条件为 RTADdress 时,设置 1553B 总线触发的远程终端地址。

格式::TRIGger:1553B:RTADdress <s>, <address>

:TRIGger:1553B:RTADdress?

其中, <s>, 离散型, {S1|S2}; <address>, 整型, 0至FF。

3. 2. 9. 13. 9:TRIGger: 429

3. 2. 9. 13. 9. 1 :TRIGger: 429:TYPE

功能:设置 429 总线触发的触发条件。

格式::TRIGger:429:TYPE <s>, <type>

:TRIGger:429:TYPE?

其中, <s>, 离散型, {S1|S2}; <type>, 离散型, {WBEGin|WEND| LABE1|SDI|DATA|SSM|LSDI|LDATa|LSSM|WERROr|WINTerval|VERRor|AERRor|ALL0|ALL1 }。

WBEGin, 字起始; WEND, 字结束; LSDI, LABEL+SDI; LDATa, LABEL+DATA; LSSM, LABEL+SSM; WERROr, 字错误; WINTerval, 字间隙错误; VERRor, 校验错误; AERRor, 所有错误; ALLO, 所有 0 位; ALL1, 所有 1 位。

其中,选了LSDI、LDATa、LSSM后,需要设置附带的参数,则使用LABE1、SDI、DATA、SSM来设置参数;

例如:

:TRIGger:429:TYPE S1, LSDI

:TRIGger:429:LABE1 S1,377

:TRIGger:429:SDI S1,11

3. 2. 9. 13. 9. 2 : TRIGger: 429: WBEGin

功能: 当 429 总线触发条件为 WORD 开始时,设置 429 总线触发的触发字值。

格式::TRIGger:429:WBEGin <s>>

:TRIGger:429:WBEGin?

其中, <s>, 离散型, {S1 | S2}。

3. 2. 9. 13. 9. 3 :TRIGger: 429: WEND

功能: 当 429 总线触发条件为 WORD 结束时,设置 429 总线触发的触发字值。

格式::TRIGger:429:WEND <s>

:TRIGger:429:WEND?

其中, <s>, 离散型, {S1 | S2}。

3. 2. 9. 13. 9. 4 :TRIGger: 429:LABE1

功能: 当 429 总线触发条件为 LABE1、LSDI、LDATa 或 LSSM 时,设置 429 总线触发的触发 LABEL 值。

格式::TRIGger:429:LABE1 <s>, <data>

:TRIGger:429:LABE1?

其中, <s>, 离散型, {S1|S2}; <data>, 整型, 八进制, 0至377。

3. 2. 9. 13. 9. 5 :TRIGger: 429:SDI

功能: 当 429 总线触发条件为 SDI 或 LSDI 时,设置 429 总线触发的触发 SDI 值。

格式::TRIGger:429:SDI <s>, <data>

:TRIGger:429:SDI?

其中, <s>, 离散型, {S1|S2}; <data>, 整型, 二进制, 00至11。

3. 2. 9. 13. 9. 6 :TRIGger: 429:DATA

功能: 当 429 总线触发条件为 DATA 或 LDATa 时,设置 429 总线触发的触发数据值。

格式::TRIGger:429:DATA <s>, <data>

:TRIGger:429:DATA?

其中, <s>, 离散型, {S1|S2}; <data>, 整型, 十六进制, 0至 FFFFFF。

3. 2. 9. 13. 9. 7 : TRIGger: 429:SSM

功能: 当 429 总线触发条件为 SSM 或 LSSM 时,设置 429 总线触发的触发数据值。

格式::TRIGger:429:SSM <s>, <data>

:TRIGger:429:SSM?

其中, <s>, 离散型, {S1 | S2}; <data>, 整型, 二进制, 0至11。

3.2.10 时基命令子系统

3. 2. 10. 1 : TIMebase: EXTent

功能:设置水平时基档位。

格式::TIMebase:EXTent<extent>

:TIMebase:EXTent?

其中, < extent >, 实型。单位: S

返回格式:查询以科学计数形式返回偏移值。

举例:

下面的命令设置水平时基为 2us。

格式::TIMebase:EXTent 2.000000e-6

下面的查询返回"2.000000e-06"

:TIMebase:EXTent?

3. 2. 10. 2 : TIMebase: MODE

功能:设置屏幕时基显示方式。"YT"或"XY"。

格式: :TIMebase:MODE<mode>

:TIMebase:MODE?

其中, <mode>, 离散型, "YT"或"XY"。

3. 2. 10. 3 :TIMebase:ROLL:DISPlay

功能: 打开或关闭 ROLL 模式 (100ms 以上时基)。

格式: :TIMebase:ROLL:DISPlay <bool>

:TIMebase:ROLL:DISPlay?

其中, <bool>, 布尔型, {{0|0FF}|{1|0N}}.

注:如果需要工作在 roll 模式,打开此开关后,还需要将时基设置在 100ms/div 以上。

3. 2. 10. 4 :TIMebase:POSition

功能:设置波形显示的水平偏移。

格式: :TIMebase:POSition <position>

:TIMebase:POSition?

其中, 〈POSition〉, 实型。

返回格式:查询以科学计数形式返回偏移值。

举例:

下面的命令设置水平偏移为 2us。

:TIMebase:POSition 0.000002

下面的查询返回"2.000000e-06"

:TIMebase:POSition?

3. 2. 10. 5: TIMebase: ZOOm: SCA1e

功能:设置与查询 zoom 打开后大窗口的时基。

:TIMebase:ZOOm:SCAle <value>

:TIMebase:ZOOm:SCAle?

其中, <value>为实型, {1e-9~1e3}

3.2.11 存储命令子系统

3. 2. 11. 1 :STORage:SAVE

功能:存储指定通道的波形到指定位置。

格式: :STORage:SAVE<channel>, <save>

:STORage:SAVE<channel>

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4 | MATH}; <save>, 离散型, {LOCa1 | UDISk}, 默认 LOCa1

注: 在分段存储中,存储当前帧。

3. 2. 11. 1. 1 :STORage:SAVE:SOURce

格式: :STORage:SAVE:SOURce<channel>

:STORage:SAVE:SOURce?

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4 | MATH};

3. 2. 11. 1. 2 :STORage:SAVE :LOCAtion

格式: :STORage:SAVE:LOCAtion<location>

:STORage:SAVE:LOCAtion?

其中, < LOCAtion >, 离散型, { LOCal | UDISk };

3. 2. 11. 1. 3 :STORage:SAVE:TYPE

格式::STORage:SAVE:TYPE<type>

:STORage:SAVE:TYPE?

其中, <TYPE>, 离散型, { WAV | BIN | CSV };

3. 2. 11. 1. 4 :STORage:SAVE:FILename

格式: :STORage:SAVE:FILename<filename>

:STORage:SAVE:FILename?

其中, 〈filename〉:= quoted ASCII 字符串

3. 2. 11. 1. 5:STORage:SAVE:ALLSegments

bool>

功能:分段存储情况下,设置存储所有段

格式: :STORage:SAVE:ALLSegments <bool>

:STORage:SAVE:ALLSegments?

其中, <bool>, 布尔型, {{0|0FF}|{1||0N}}。

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令分段存储情况下,设置存储所有段。

:STORage:SAVE:ALLSegments ON 或者:STORage:SAVE:ALLSegments 1

下面的查询返回"1"。

:STORage:SAVE:ALLSegments?

注:此命令只在分段存储打开的情况下有效,此命令打开后,存储类型:STORage:SAVE:TYPE<type>只能选 BIN。

3.2.11.1.6 :STORage:SAVE:START 格式::STORage:SAVE:START

开始存储.

3. 2. 11. 2 :STORage:LOAD

功能:载入ref。

格式::STORage:LOAD <ref><bool>, <filename>

其中, <source>, 离散型, {R1 | R2 | R3 | R4 }; , <filename>, 离散型, 载入的名称, <bool>, 布尔型, {{0 | 0FF} | {1 | 0N}}。

3. 2. 11. 3:STORage:CAPTure

功能: 屏幕截图相关设置。

3.2.11.3.1 :STORage:CAPTure:TIME <bool>

功能:设置和查询,截图的时间戳

格式: :STORage:CAPTure:TIMEstamp <bool>

:STORage:CAPTure:TIMEstamp?

其中, <bool>, 布尔型, {{0|0FF}|{1||0N}}。

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令打开截图的时间戳。

:STORage:CAPTure:TIMEstamp ON 或者:STORage:CAPTure:TIMEstamp 1

下面的查询返回"1"。

:STORage:CAPTure:TIMEstamp?

3. 2. 11. 3. 2 :STORage:CAPTure:INCOlor <bool>

功能:设置和查询,截图是否反色

格式: :STORage:CAPTure:INCOlor <bool>

:STORage:CAPTure:INCOlor?

其中, <bool>, 布尔型, {{0|0FF}|{1||0N}}。

返回格式: 查询返回 "0" 或"1"。

举例:

下面的命令打开截图的时间戳。

:STORage:CAPTure:INCOlor ON 或者:STORage:CAPTure:INCOlor 1

下面的查询返回"1"。

:STORage:CAPTure:INCOlor?

3. 2. 11. 3. 3 :STORage:CAPTure:STARt

功能: 开始截图

格式::STORage:CAPTure:STARt

举例:

下面的命令开始截图。

:STORage:CAPTure:STARt

3. 2. 11. 4:STORage:CONSave

功能:存储示波器设置。

定义示波器设置的名称

格式: :STORage:CONSave:FILename<filename>

其中, 〈filename〉:= quoted ASCII 字符串

格式: :STORage:CONSave:STARt

开始存储.

3. 2. 11. 5:STORage:CONLoad:FILename<filename>

功能: 调用相应名字的示波器设置。

3.2.12 总线配置命令子系统

3. 2. 12. 1:BUS<. S>

3. 2. 12. 1. 1 :BUS<S>:DISP1ay 功能: 开关解码通道。

格式: :BUS<S>:DISPlay <bool>

:BUS<S>:DISPlay?

其中, <n>, 离散型, {1|2|3|4}; <bool>, 布尔型, {{0|0FF}|{1||0N}}。

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令打开解码通道1的显示。

:BUS1:DIAPlay ON 或:BUS1:DIAPlay 1

下面的查询返回"1"。

:BUS1:display?

3. 2. 12. 1. 2 :BUS<S>:TYPE

功能:设置总线 S1 或 S2 的总线类型。

格式: :BUS<S>:TYPE <type>

:BUS<S>:TYPE?

其中, 〈s〉, 离散型, {S1 | S2};

<type>, 离散型, {UART|LIN|SPI|CAN|IIC|1553B|429}。

3, 2, 12, 1, 3 :BUS<S>:MODE <mode>

功能:设置总线的显示模式,包含图形与文本两种模式。

格式: :BUS<S>:MODE <mode>

:BUS<S>:MODE?

其中, <mode>, 离散型, {GRAP | TXT}。

3. 2. 12. 1. 4 :BUS\S\:\:LEVel \(\channel \), \(\level \)
功能: 设置总线的阈值电平。

格式: :BUS<S>:LEVel <channel>, <level>

:BUS<S>:LEVel? <channel>

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4}; <1eve1>, 实型.

注:此条命令需要图形模式(:BUS<S>:MODE GRAP)下,在完成其他总线配置后,设置。

3. 2. 12. 1. 5 :BUS\S\: HLEVel \(\text{channel} \), \(\text{level} \)

功能: 当总线有2条阈值电平时,设置总线的高阈值电平。

格式: :BUS<S>:HLEVel <channel>, <level>

:BUS<S>:HLEVel? <channel>

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4 }; <1evel>, 实型.

注:此条命令需要图形模式(:BUS<S>:MODE GRAP)下,在完成其他总线配置后,设置。

3. 2. 12. 1. 6 :BUS<S>:LLEVel <channel>, <level>

功能: 当总线有2条阈值电平时,设置总线的低阈值电平。

格式: :BUS<S>:LLEVel <channel>, <level>

:BUS<S>:LLEVel? <channel>

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4}; <1evel>, 实型.

注:此条命令需要图形模式(:BUS<S>:MODE GRAP)下,在完成其他总线配置后,设置。

3. 2. 12. 2 :BUS<S>: UART

3. 2. 12. 2. 1 :BUS<s>:UART:RX

功能:设置 UART 总线配置的 RX 通道源。

格式: :BUS<s>:UART:RX <channel>

:BUS<s>:UART:RX?

其中,〈s〉,离散型,{S1|S2},〈channel〉,离散型,{CH1|CH2|CH3|CH4}。

3. 2. 12. 2. 2 :BUS(s>:UART:IDLE1v1

功能:设置 UART 总线配置的空闲电平状态。

格式: :BUS<s>:UART:IDLE1v1 <state>

:BUS<s>:UART:IDLE1v1?

其中, <state>, 离散型, {high|low}。

3. 2. 12. 2. 3 :BUS(s>:UART:BAUDrate

功能:选择 UART 总线配置的波特率。单位: b/s

格式: :BUS<s>:UART:BAUDrate <baudrate>

:BUS<s>:UART:BAUDrate?

其中, <baudrate>, 离散型, {1200|2400|4800|9600|19200|38400|43000|56000|57600|115200}。

3. 2. 12. 2. 4 :BUS<s>:UART:CHECk

功能:选择 UART 总线配置的校验方式。

格式: :BUS<s>:UART:CHECk <check>

:BUS<s>:UART:CHECk?

其中, <check>, 离散型, {NONE | ODD | EVEN}。

3. 2. 12. 2. 5 :BUS(s>:UART:USERbaud

功能:选择 UART 总线配置时用户自定义的波特率。单位:b/s

格式: :BUS<s>:UART:USERbaud <baudrate>

:BUS<s>:UART:USERbaud?

其中, 〈baudrate〉, 整型, 1200 至 8000000。

3. 2. 12. 2. 6 :BUS<s>:UART:WIDTh

功能:选择 UART 总线配置时的数据位宽。

格式: :BUS<s>:UART:WIDTh <width>

:BUS<s>:UART:WIDTh?

其中, <width>, 离散型, {5|6|7|8|9}。

3. 2. 12. 2. 7 :BUS(s>:UART:DISP1ay

功能:选择 UART 总线配置时的数据显示方式。

格式: :BUS<s>:UART:DISPlay <display>

:BUS<s>:UART:DISP1ay?

其中, 〈display〉, 离散型, {HEX | BIN | ASCII} 。

3. 2. 12. 3:BUS⟨s⟩:LIN

3. 2. 12. 3. 1 :BUS<S>:LIN:CHANnel

功能:选择LIN总线配置的通道源。

格式: :BUS<S>:LIN:CHANnel <channel>

:BUS<S>:LIN:CHANnel?

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

3. 2. 12. 3. 2 :BUS<S>:LIN:IDLE1v1

功能:设置 LIN 总线配置的空闲电平状态。

格式: :BUS<S>:LIN:IDLE1v1 <state>

:BUS<S>:LIN:IDLE1v1?

其中, <state>, 离散型, {high | low}。

3. 2. 12. 3. 3 :BUS<S>:LIN:BAUDrate

功能:选择LIN总线配置的波特率。单位,b/s。

格式: :BUS<S>:LIN:BAUDrate <baudrate>

:BUS<S>:LIN:BAUDrate?

其中, <baudrate>, 离散型, {2400 | 9600 | 19200}。

3. 2. 12. 3. 4 :BUS<S>:LIN:USERbaud

功能:选择 LIN 总线配置时用户自定义的波特率。单位: b/s

格式: :BUS<S>:LIN:USERbaud <baudrate>

:BUS<S>:LIN:USERbaud?

其中, <baudrate>, 整型, 2400至625000。

3. 2. 12. 4:BUS<S>:SPI

3. 2. 12. 4. 1 :BUS<S>:SPI:CLK

功能:选择 SPI 总线配置的时钟源。

格式: :BUS<S>:SPI:CLK <channel>

:BUS<S>:SPI:CLK?

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

3. 2. 12. 4. 2 :BUS<S>:SPI:DATA

功能:选择 SPI 总线配置的数据源。

格式: :BUS<S>:SPI:DATA <channel>

:BUS<S>:SPI:DATA?

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

3. 2. 12. 4. 3 :BUS<S>:SPI:WIDTh

功能:选择 SPI 总线配置时的数据位宽。

格式: :BUS<S>:SPI:WIDTh <width>

:BUS<S>:SPI:WIDTh?

其中, 〈width〉, 离散型, {4|8|16|24|32}。

3. 2. 12. 4. 4 :BUS<S>:SPI:IDLE1v1

功能:选择 SPI 总线配置的空闲电平状态。

格式: :BUS<S>:SPI:IDLE1v1 <state>

:BUS<S>:SPI:IDLE1v1?

其中, <state>, 离散型, {high|low}。

3. 2. 12. 4. 5 :BUS<S>:SPI:SLOPe

功能:选择 SPI 总线配置的时钟边沿类型。

格式: :BUS<S>:SPI:SLOPe <slope>

:BUS<S>:SPI:SLOPe?

其中, <slope>, 离散型, {RISE | FALL}。

3. 2. 12. 4. 6:BUS<S>:SPI:CS

功能:设置和查询 SPI 中 CS 的使能

格式::BUS<S>:SPI:CS <bool>

:BUS<S>:SPI:CS?

其中, <bool>, 布尔型, {{0|0FF}|{1||0N}}。

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令打开 CS 使能。

:BUS<S>:SPI:CS <bool> ON 或者:BUS<S>:SPI:CS <bool> 1

下面的查询返回"1"。

:BUS<S>:SPI:CS?

3. 2. 12. 4. 7:BUS<S>:SPI:CS:SOURce

功能:设置和查询 SPI 中 CS 的源

格式: :BUS<S>:SPI:CS:SOURce <channel>

:BUS<S>:SPI:CS:SOURce?

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

返回格式: 查询返回 "CH1" 、 "CH2" 、 "CH3" 、 "CH4"。

举例:

下面的命令设置 CS 的源。

:BUS<S>:SPI:CS:SOURce CH1

下面的查询返回"CH1"。

:BUS<S>:SPI:CS:SOURce?

3. 2. 12. 4. 8:BUS<S>:SPI:CS:IDLE1v1

功能:选择 SPI 总线配置中 CS 的空闲电平状态。

格式: :BUS<S>:SPI:CS:IDLE1v1 <state>

:BUS<S>:SPI:CS:IDLE1v1?

其中, <state>, 离散型, {HIGH | LOW}。

返回格式: 查询返回"HIGH"、"LOW"。

举例:

下面的命令设置 CS 的源。

:BUS<S>:SPI:CS:IDLE1v1 HIGH

下面的查询返回"HIGH"。

:BUS<S>:SPI:CS:IDLE1v1?

3. 2. 12. 5:BUS\S\:CAN (FD)

3. 2. 12. 5. 1 :BUS〈S〉: CAN: CHANnel 功能:选择 CAN 总线配置的通道源。

格式: :BUS<S>:CAN:CHANnel <channel>

:BUS<S>:CAN:CHANnel?

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

3. 2. 12. 5. 2 :BUS<S>:CAN:SIGNal

功能:设置 CAN 总线配置的空闲电平状态。

格式: :BUS<S>:CAN:SIGNal <signal>

:BUS<S>:CAN:SIGNa1?

其中, <signal>, 离散型, {CAN H | CAN L | H L | L H | RX | TX }。

3. 2. 12. 5. 3 :BUS<S>:CAN:BAUDrate

功能:选择CAN总线配置的波特率。单位,b/s。

格式: :BUS<S>:CAN:BAUDrate <baudrate>

:BUS<S>:CAN:BAUDrate?

其中, <baudrate>, 离散型, {|50000|100000|250000|500000|800000|1000000}}。

3. 2. 12. 5. 4 :BUS<S>:CAN:USERbaud

功能: 选择 CAN 总线配置时用户自定义的波特率。单位: b/s

格式: :BUS<S>:CAN:USERbaud <baudrate>

:BUS<S>:CAN:USERbaud?

其中, <baudrate>, 整型, 10000至 1000000。

3. 2. 12. 5. 5 :BUS<S>:CAN:SAMPlepoint

功能:选择 CAN 总线配置时的采样点以及 CAN FD 时仲裁场的采样点,单位%

格式: :BUS<S>:CAN:SAMPlepoint <percent>

:BUS<S>:CAN:SAMPlepoint?

其中, < percent >, 整型, 1至99。

3. 2. 12. 5. 6 :BUS<S>:CAN:FDBAudrate

功能:选择 CAN FD 总线配置数据位的波特率。单位,b/s。

格式: :BUS<S>:CAN:FDBAudrate <baudrate>

:BUS<S>:CAN:FDBAudrate?

其中, <baudrate>, 离散型, {NONE | 2M | 5M}

3. 2. 12. 5. 7 :BUS<S>:CAN:FDUSerbaud

功能:选择 CANFD 总线配置时数据位用户自定义的波特率。单位:b/s

格式: :BUS<S>:CAN:FDUSERbaud <baudrate>

:BUS<S>:CAN:FDUSerbaud?

其中, 〈baudrate〉, 整型, 1000000 至 12000000。

3. 2. 12. 5. 8 :BUS<S>:CAN:FDSAmplepoint

功能: 功能: 选择 CANF 数据场的采样点,单位%

格式: :BUS<S>:CAN: FDSAmplepoint <percent>

:BUS<S>:CAN: FDSAmplepoint?

其中, < percent >, 整型, 1至99。

3. 2. 12. 5. 9 :BUS<S>:CAN:ISO

功能:设置 CAN 总线配置的标准, ISO 或者非 ISO。

格式: :BUS<S>:CAN:ISO <iso>

:BUS<S>:CAN:ISO?

其中, <iso>, 离散型, {ISO | NON}。

3. 2. 12. 6:BUS<S>: IIC

3. 2. 12. 6. 1 :BUS<S>:IIC:SDA

功能:设置 IIC 总线配置的串行数据通道源。

格式: :BUS<S>:IIC:SDA <channel>

:BUS<S>:IIC:SDA?

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

3. 2. 12. 6. 2 :BUS<S>:IIC:SCL

功能:设置 IIC 总线配置的串行时钟的通道源。

格式: :BUS<S>:IIC:SCL <channel>

:BUS<S>:IIC:SCL?

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

3. 2. 12. 7:BUS\S\:1553B

3. 2. 12. 7. 1 :BUS<S>:1553B:SOURce

功能:设置 1553B 总线配置的通道源。

格式: :BUS<S>:1553B:SOURce <channel>

:BUS<S>:1553B:SOURce?

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

3. 2. 12. 7. 2 :BUS\S\::1553B:DISPlay

功能:设置 1553B 总线配置的显示模式。

格式::BUS<S>1553B:DISPlay <diaplay>

:BUS<S>:1553B:DISPlay?

其中, 〈diaplay〉, 离散型, {BINAry | HEX}。

3. 2. 12. 8:BUS <S>:429

3, 2, 12, 8, 1 :BUS<S>:429:SOURce

功能:设置 429 总线配置的通道源。

格式: :BUS<S>:429:SOURce <channel>

:BUS<S>:429:SOURce?

其中, <channel>, 离散型, {CH1 | CH2 | CH3 | CH4 }。

3. 2. 12. 8. 2 :BUS<S>:429:FORMat

功能:设置 429 总线配置的格式

格式: :BUS<S>:429:FORMat <format>

:BUS<S>:429:FORMat?

其中, 〈format〉, 离散型, { LDAT | LDSS | LSDS }.

LSDS, LABEL+SDI+DATA+SSM; LDSS, LABEL+DATA+SSM; LDAT, LABEL+DATA.

3. 2. 12. 8. 3 :BUS<S>:429:DISPlay

功能:设置 429 总线配置的显示模式。

格式: :BUS<S>:429:DISPlay <diaplay>

:BUS<S>:429:DISP1ay?

其中, 〈diaplay〉, 离散型, {BINAry | HEX}。

3. 2. 12. 8. 4 :BUS<S>:429:BANDrate

功能:设置 429 总线配置的波特率。

格式: :BUS<S>:429:BANDrate <bandrate>

:BUS<S>:429:BANDrate?

其中, <bandrate>, 离散型, {12500 | 100000}。

3.2.13 参考波形命令子系统

3. 2. 13. 1 : REFerence: DISPlay

功能: 打开或关闭 REF 功能。

格式::REFerence:DISPlay(bool)

:REFerence:DISPlay?

其中, <bool>, 布尔型, {{0|0FF}|{1||0N}}。

返回格式:查询返回"1"或"0"。

举例:

下面的命令打开 REF 功能。

:REFerence:DISPlay ON

下面的命令返回 1.

:REFerence:DISPlay?

3. 2. 13. 2 :REFerence <n>:ENABle <bool>

功能: 打开或关闭指定的参考通道。

格式: :REFerence <n>:ENABle <bool>

:REFerence<n>:ENABle?

其中, <n>, 离散型, {1|2|3|4}; <bool>, 布尔型, {{0|0FF}|{1||0N}}。

返回格式:查询返回"1"或"0"。

举例:

下面的命令打开 R1。

:REFerence1:ENABle ON

下面的命令返回1.

:REFerence1:ENAB1e?

3. 2. 13. 3 :REFerence <n>:HSCale <scale>

功能:设置参考通道的水平档位。

格式: :REFerence <n >: HSCale <scale >

:REFerence<n>:HSCale?

其中, <n>, 离散型, {1|2|3|4}; <scale>, 实型, 1ns~1ks 或 1mHz~1GHz。

返回格式:查询以科学计数形式返回水平档位。

3. 2. 13. 4 :REFerence <n>:VSCale <scale>

功能:设置参考通道的垂直档位。

格式: :REFerence(n):VSCale (scale)

:REFerence<n>:VSCale?

其中, <n>, 离散型, {1|2|3|4}; <scale>, 实型, 5mV~5GV。

返回格式:查询以科学计数形式返回垂直档位。(当调用的参考波形是 fft 时候,通道水平档位不会变化)

举例:

下面的命令设置参考通道1的垂直档位为2V。

:REFerence1:VSCale 2

下面的命令返回 2.000000e+00.

:REFerence1:VSCale?

3.2.13.5 :CURRent:REFerence <n>

功能:选择当前参考通道。

格式: :CURRent:REFerence <n>

其中, <n>, 离散型, {R1 | R2 | R3 | R4}。

3. 2. 13. 6:REFerence <n>: VPOSition <pos>

功能: 设置指定参考通道波形显示的垂直偏移。

格式: :REFerence(n):VPOSition(pos)

:REFerence<n>:VPOSition?

其中, 〈n〉, 离散型, {1|2|3|4}; 〈pos〉, 实型。

返回格式:查询以科学计数形式返回偏移值。

举例:

下面的命令设置通道 1 的垂直偏移为 0.01V。

:REFerence1:VPOSition 0.01

下面的查询返回"1.000000e-02"

:REFerence1:VPOSition?

3. 2. 13. 7:REFerence <n>:HPOSition <pos>

功能: 设置波形显示的水平偏移。

格式: :REFerence:HPOSition <n>, <pos>

:REFerence:HPOSition? <n>

其中, <n>, 离散型, {1|2|3|4}; <pos>, 实型。

返回格式:查询以科学计数形式返回偏移值。

举例:

下面的命令设置 R1 水平偏移为 2us。

:REFerence1:HPOSition 0.000002

下面的查询返回"2.000000e-06"

:REFerence1:HPOSition?

3. 2. 13. 8:REF<n>:SRATe?

查询参考波形的采样率

其中, n 为实型 {{1|2|3|4}

3. 2. 13. 9:REF<n>:MDEPth?

查询参考波形的存储深度

其中, n 为实型 {1 | 2 | 3 | 4}

3.2.14 AUTO 设置子系统

3. 2. 14. 1 :AUTO:SET:CHANnel <bool>

功能: autoset 通道自动开启与关闭的使能

格式: :AUTO:SET:CHANnel <bool>

:AUTO:SET:CHANnel?

其中, <bool>, 布尔型, {{0|0FF}|{1||0N}}。

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令打开通道1的显示。

:AUTO:SET:CHANnel ON 或:AUTO:SET:CHANnel 1

下面的查询返回"1"。

:AUTO:SET:CHANnel?

3. 2. 14. 2 :AUTO:SET:LEVe1 <1eve1>

功能: auto 中通道自动开启与关闭的有效阈值

格式: :AUTO:SET:LEVel <level>

:AUTO:SET:LEVel?

其中, <level>, 实型, 0.001V~99V。

返回格式:查询以科学计数形式返回有效阈值。

举例:

下面的命令设置有效阈值为 150mV。

:AUTO:SET:LEVnel 0.15

下面的查询返回"1.500000e-01"。

:AUTO:SET:LEVel?

3. 2. 14. 3 :AUTO:SET:SOURce <source>

功能: autoset 执行时, 优先选择触发源的规则, 当前优先 最大值优先

格式: :AUTO:SET:SOURce 〈source〉

:AUTO:SET:SOURce?

其中, <source>, 离散型, {CURrent | MAX}。

返回格式:查询返回"CURrent"或"MAX"。

举例:

下面的命令设置自动时,触发源最大值优先

:AUTO:SET:SOURce MAX

下面的查询返回"MAX"。

:AUTO:SET:SOURce?

3. 2. 14. 4 :AUTO:RANge <bool>

功能:按 Auto 键执行的模式,分为 autoset 和 autorange

格式: :AUTO:RANge <bool>

:AUTO:RANge?

其中, $\langle bool \rangle$,布尔型, $\{\{0 | OFF\} | \{1 | | ON\}\}$,0 的时候位 AutoSet 模式,1 的时候位 AutoRange 模式

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令 Autorange 使能。

:AUTO:RANge ON 或:AUTO:RANge 1

下面的查询返回"1"。

:AUTO:RANge?

3.2.14.5 :AUTO:RANge:VERtical <bool>

功能: AutoRange 过程中垂直刻度系数是否自动

格式: :AUTO:RANge:VERtical 〈bool〉

:AUTO:RANge:VERtical?

其中, <bool>, 布尔型, {{0|0FF}|{1||0N}}

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令打开 VERtical 自动。

:AUTO:RANge:VERtical ON 或:AUTO:RANge:VERtical 1

下面的查询返回"1"。

:AUTO:RANge:VERtical?

3. 2.14.6 :AUTO:RANge:HORizontal <bool>

功能: AutoRange 过程中时基是否自动

格式: :AUTO:RANge:HORizontal <bool>

:AUTO:RANge:HORizontal?

其中, <bool>, 布尔型, {{0|0FF}|{1||0N}}

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令打开 HORizontal 自动。

:AUTO:RANge:HORizontal ON 或:AUTO:RANge:HORizontal 1

下面的查询返回"1"。

:AUTO:RANge:HORizontal?

3. 2. 14. 7 :AUTO:RANge:LEVe1 <bool>

功能: AutoRange 过程中触发电平是否自动

格式: :AUTO:RANge :LEVel <bool>

:AUTO:RANge:LEVel?

其中, <bool>, 布尔型, {{0|0FF}|{1||0N}}

返回格式: 查询返回 "0" 或 "1"。

举例:

下面的命令打开 LEVel 自动。

:AUTO:RANge:LEVel ON 或:AUTO:RANge:LEVel 1

下面的查询返回"1"。

:AUTO:RANge:LEVel?

3.2.15 波形命令子系统

:WAVeform:SOURce

:WAVeform:MODE

:WAVeform:FORMat

:WAVeform:DATA?

:WAVeform:STARt

:WAVeform:STOP

:WAVeform:PREamble?

:WAVeform:XINCrement?

:WAVeform:XORigin?

:WAVeform:XREFerence?

:WAVeform:YINCrement?

:WAVeform:YORigin?

:WAVeform:YREFerence?

3. 2. 15. 1 : WAVeform: SOURce

功能: 设置波形读取的通道源。

格式: :WAVeform:SOURce <source>

:WAVeform:SOURce?

其中, < source >, 离散型, {CH1 | CH2 | CH3 | CH4}

返回格式

查询返回 "CH1"、"CH2"、"CH3"或"CH4"。

举例

下面的命令选择通道2为通道源。

:WAVeform:SOURce CH2

下面的查询返回"CH2"。

:WAVeform:SOURce?

3. 2. 15. 2 : WAVeform: MODE

功能 设置或者查询读取波形的模式。

格式 :WAVeform:MODE <mode>

:WAVeform:MODE?

其中, < mode >, 离散型, {NORMal|MAXimum|RAW}

说明

NORMal: 返回抽样后的波形点数。

MAXimum: 返回当前状态下的最大有效数据点数。运行状态下返回屏幕显示的数据 点数,停止状态下返回内存数据点数。

RAW: 返回当前系统内存数据点数。只在停止状态下有效。

返回格式

查询返回"NORMal"、"MAXimum"或"RAW"。

举例

下面的命令选择 RAW 模式。

:WAVeform:MODE RAW

下面的查询返回"RAW"。

:WAVeform:MODE?

3. 2. 15. 3 : WAVeform: FORMat

功能 设置或者查询读取数据时,数据的返回格式。

格式 :WAVeform:FORMat < format >

:WAVeform:FORMat?

其中, 〈 format〉, 离散型, { WORD | ASCii }

说明

WORD: 一个点的数据占 16bit, 两个字节,表示垂直方向数值大小。

ASCii: 返回点的数据以科学计数法显示,数据之间以逗号分离,例如+3.590104E-02,-7.180208E-02,-7.180208E-02,+0.000000E+00,-3.590104E-02,-3.590104E-02,-7.180208E-02,。

返回格式

查询返回"WORD"或"ASCII"。

举例

下面的命令选择 WORD 模式。

:WAVeform:FORMat WORD

下面的查询返回"WORD"。

:WAVeform:FORMat?

3. 2. 15. 4 : WAVeform: STARt

功能 设置或者查询读取数据的起始位置。

格式 :WAVeform:STARt <no>

:WAVeform:STARt?

其中, 〈no〉, 整型, 数值跟设置的 FORMat 类型有关

NORMa1 模式下: 1 至屏幕波形区横向最大像素值(每格像素*横向格数)

MAX: 1至当前屏幕的有效点数

RAW: 1 至当前存储深度的最大数值

说明

当屏幕的数据量比较大时,通常不能一次性读取完成,需要分几次读取,这时候就需要设置每一次的读取起始点和结束点。

返回格式

查询返回整型数值。

举例

下面的命令设置起始点位500。

:WAVeform:STARt 500

下面的查询返回"500"。

:WAVeform:STARt?

3. 2. 15. 5 : WAVeform: STOP

功能 设置或者查询读取数据的截止位置。

格式 :WAVeform:STOP <no>

:WAVeform:STOP?

其中, 〈no〉, 整型, 数值跟设置的 FORMat 类型有关

NORMal 模式下: 1至屏幕波形区横向最大像素值(每格像素*横向格数)

MAX: 1至当前屏幕的有效点数

RAW: 1 至当前存储深度的最大数值

说明

当屏幕的数据量比较大时,通常不能一次性读取完成,需要分几次读取,这时候就需要设置每一次的读取起始点和结束点。结束点的数值要大于或者等于起始点的数值。

返回格式

查询返回整型数值。

举例

下面的命令设置起始点位 1000。

:WAVeform:STOP 1000

下面的查询返回"1000"。

:WAVeform:STOP?

3. 2. 15. 6 : WAVeform: DATA?

功能 读取波形数据。

格式 :WAVeform:DATA?

该命令受:WAVeform:SOURce,:WAVeform:FORMat,:WAVeform:MODE 等命令设置的影响。 说明

屏幕波形数据读取流程:

S1.: WAV: SOURce CH1 设置读取的源

S2.:WAV:MODE NORM 波形模式为 NORM

S3.: WAV: FORMat BYTE 设置数据返回格式为 BYTE

:WAV:DATA? 获取屏幕上的数据

内存波形数据读取:

S1.:MENU:STOP 内存波形只能在停止状态下进行读取

S2.: WAV: SOURce CH1 设置读取的源S3.: WAV: MODE RAW 波形模式为 RAW

S4.: WAV: FORMat BYTE 设置数据返回格式为 WORD S5.: WAVeform: STARt 1 设置读取点的起始位置为 1

S6.: WAVeform: STOP 62500 设置读取点的结束位置为 62500

S7.: WAV: DATA? 获取缓存中的数据

返回格式

当:WAV:FORMat 设置的数据格式为 WORD 时,

返回的数据由4个部分组成,分别标识符、数据长度描述、数据长度、波形数据。

#MdddddddXXXX

其中的 # 为标识符 M 表示后跟随的数据前 M 位,描述的是此次返回波形数据总的字节数,以 dddddddd 表示; 再后面跟随的 XXXX 为波形数据

例如:

发送:WAV:DATA? 命令后,返回数据

#90 00 00 10 24 80 81 82 83 89

其中 # 是标识符 9 指后面跟随的 9 位数据表示返回数据的采样点个数 0 00 00 10 24 共 9 位数据,表示数据量为 1024 个采样点。

注意:

如果内存的数据量比较大,需要用户分多次读取,每次读取一块数据,然后将每次读取的数据接起来。每次读取的数据量由设置的数据返回格式(:WAV:FORMat)决定,如下表所示:

设置的格式	单次能够读取的最大数据量	备注
WORD	62,5000 采样点	
ASCII	15625	

例如

内存数据量为 220K,设置数据返回格式为 WORD;由于在 WORD 模式下,每次读取的数据量为 62500,共有 220000 数据需要读取,则应该读 4 次;

读取第一段		读取第二段		读取第三段		读取第四段	
62500		62500		62500		32500	
Start	Stop	Start	Stop	Start	Stop	Start	Stop
1	62500	62501	125000	125001	187500	187501	220000

应按照如下步骤读取:

设置相应参数

S1.:MENU:STOP 设置示波器为停止状态(内存波形只能在停止状态下进行读取)

S2.: WAV: SOURce CH1 设置读取的源 S3.: WAV: MODE RAW 波形模式为 RAW

S4.: WAV: FORMat WORD 设置数据返回格式为 WORD (每次可读取 62500 采样点)

读取第一段数据

 S5. : WAVeform: STARt 1
 设置读取点的起始位置为 1

 S6. : WAVeform: STOP 62500
 设置读取点的结束位置为 62500

S7. : WAV: DATA? 获取缓存中第一段数据

读取第二段数据

S5.: WAVeform: STARt 62501 设置读取点的起始位置为 62501

S6.: WAVeform: STOP 125000 设置读取点的结束位置为 125000

S7. : WAV: DATA? 获取缓存中第二段数据

读取第三段数据

S5. : WAVeform: STARt 125001 设置读取点的起始位置为 125001

S6. : WAVeform: STOP 187500 设置读取点的结束位置为 187500

S7. :WAV:DATA? 获取缓存中第三段数据

读取第四段数据

S5.: WAVeform: STARt 187501 设置读取点的起始位置为 187501

S6.: WAVeform: STOP 220000 设置读取点的结束位置为 220000

S7. :WAV:DATA? 获取缓存中第四段数据

四段全部读完,接起来即为整个内存的数据。

3. 2. 15. 7 : WAVeform: PREamble?

命令格式 :WAVeform:PREamble?

功能描述 查询并返回全部的波形参数。

返回格式

查询返回以","间隔的9个波形参数:

<format>, <type>, <count>, <xincrement>, <xorigin>, <xreference>, <yincrement>, <yorigin>, <yreference>

〈format〉: 0 (WORD) 或 2 (ASCII))。参考: WAVeform: FORMat 命令。

<type>: 0 (NORMal)、1 (MAXimum)或2 (RAW)。参考:WAVeform:MODE命令。

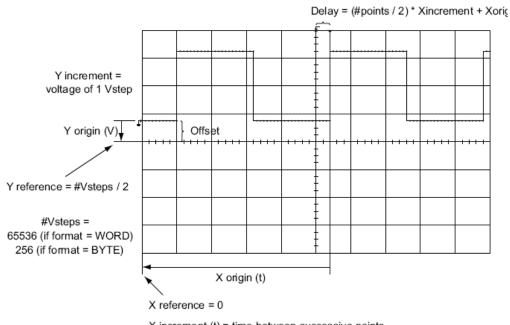
<count>: 在平均采样方式下为平均次数(参考: ACQuire: AVERages 命令),其他方式下为1。

<xincrement>: X方向上的相邻两点之间的时间差。参考:WAVeform:XINCrement?命令。

〈xorigin〉: X方向上从触发点到"参考时间基准"的时间。参考:WAVeform:XORigin?命令。

<xreference>: X方向上数据点的参考时间基准。参考:WAVeform:XREFerence?命令。

<yincrement>: Y方向上的单位电压值。参考:WAVeform:YINCrement?命令。


<yorigin>: Y方向上相对于"垂直参考位置"(参考:WAVeform:YREFerence?命令)的垂直偏移。参考:WAVeform:YORigin?命令。

<yreference>: Y方向的垂直参考位置。参考:WAVeform:YREFerence?命令。

举例

下面的查询返回"1, 2, 1, 0.000000, -0.001488, 0, 0.062500, 3.968750, 127"。

:WAVeform:PREamble?

X increment (t) = time between successive points

3. 2. 15. 8 : WAVeform: XINCrement?

命令格式 :WAVeform:XINCrement?

功能描述 查询当前选中通道源 X 方向上相邻两点之间的时间间隔。

返回值与当前的数据读取模式相关:

NORMal 模式下, XINCrement=1/数学波形采样率。

RAW 模式下, XINCrement=1/SampleRate。

MAX 模式下, 仪器处于运行状态时, XINCrement=1/数学波形采样率; 仪器处于停止状态时,

XINCrement=1/SampleRate.

单位与当前的通道源相关。

返回格式

查询以科学计数形式返回时间间隔。

举例

下面的查询返回"2.000000e-08"。

:WAVeform:XINCrement?

3. 2. 15. 9 : WAVeform: XORigin?

命令格式:WAVeform:XORigin?

功能描述

查询指定源(参考: WAVeform: SOURce 命令) X 方向上第一个波形点,到触发位置的时间(以触发位置为基准 0 计算),单位为 s。

返回值与当前的数据读取模式相关:

NORMal 模式下,返回屏幕上第一个波形点距离触发位置的时间。

RAW 模式下,返回内存中第一个波形点距离触发位置的时间。

MAX 模式下, 仪器处于运行状态时, 返回屏幕上第一个波形点距离触发位置的时间; 仪器处于停止状态时, 返回内存中第一个波形点距离触发位置的时间。

返回格式

查询以科学计数形式返回时间值。

举例

下面的查询返回"-7.000000e-06"。

:WAVeform:XORigin?

3. 2. 15. 10 : WAVeform: XREFerence?

命令格式:WAVeform:XREFerence?

功能描述

查询指定源(参考:WAVeform:SOURce 命令)X 方向上数据点的参考时间基准。单位为 s, 采用科学计数法,同上。

返回格式

查询以整数形式返回时间基准。

举例

下面的查询返回"0"。

:WAVeform:XREFerence?

3. 2. 15. 11 : WAVeform: YINCrement?

命令格式:WAVeform:YINCrement?

功能描述

查询指定源(参考:WAVeform:SOURce 命令)Y 方向上的单位电压值。单位与所选源单位一致。

返回格式

查询以科学计数形式返回电压值。

举例

下面的查询返回"3.125000e-03V"。

:WAVeform:YINCrement?

3. 2. 15. 12 : WAVeform: YORigin?

命令格式

:WAVeform:YORigin?

功能描述

查询指定源(参考:WAVeform:SOURce 命令)Y 方向上相对于"垂直参考位置"(参考:WAVeform:YREFerence?命令)的垂直偏移。单位与源所选单位一致。

返回格式

查询以科学计数形式返回偏移值。

举例

下面的查询返回"3.968750e+00V"。

:WAVeform:YORigin?

3. 2. 15. 13 : WAVeform: YREFerence?

命令格式

:WAVeform:YREFerence?

功能描述

查询指定源(参考:WAVeform:SOURce 命令)Y 方向的垂直参考位置。单位与源所选单位一致。

返回格式

查询以整数形式返回参考位置。

举例

下面的查询返回"127"。

:WAVeform:YREFerence?

联系我们

深圳麦科信科技有限公司

地址:深圳市宝安区西乡街道南昌社区航城大道华丰国际机器人产业园 A 栋一楼

电话: 0755-88600880

网址: www.micsig.com.cn 邮箱: sales@micsig.com

邮编: 518000

本说明书如有改变,恕不另行通知。

本说明书的内容被认为是正确的,若用户发现有错误、遗漏等,请与 Micsig 联系。

本公司不承担由于用户错误操作所引起的事故和危害。

本说明书的版权归 Micsig 公司所有,任何单位或个人未经 Micsig 公司授权,不得复制、拷贝、摘录,Micsig 公司保留对以上行为的追诉权。